A204064
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + n*x) / (1 + k*x + n*x^2).
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 152, 572, 2324, 10124, 47012, 231572, 1204964, 6599444, 37924292, 228033332, 1431128804, 9354072404, 63548071172, 447923400692, 3270361265444, 24696229801364, 192625876675652, 1549890430643252, 12849460733123684, 109647468132256724
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 44*x^5 + 152*x^6 + 572*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + x^3*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + x^4*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, we have the identity (cf. A229046):
A(x) = 1/2 + (1/2)*(1+x)/(1+x) + (2!/2)*x*(1+x)^2/((1+x)*(1+2*x)) + (3!/2)*x^2*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + (4!/2)*x^3*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + (5!/2)*x^4*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
-
b:= proc(n, k) option remember; `if`(n<1, 1, `if`(k>
ceil(n/2), 0, add((k-j)*b(n-1-j, k-j), j=0..1)))
end:
a:= n-> ceil(add(b(n+2, k), k=1..1+ceil(n/2))/2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 26 2018
-
b[n_, k_] := b[n, k] = If[n < 1, 1, If[k > Ceiling[n/2], 0, Sum[(k - j) b[n - 1 - j, k - j], {j, 0, 1}]]];
a[n_] := Ceiling[Sum[b[n + 2, k], {k, 1, 1 + Ceiling[n/2]}]/2];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1,m,(k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( 1/2 + sum(m=1, n+1, m!/2*x^(m-1)*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=if(n<0,0,if(n<1,1,(1/2)*sum(k=0, floor((n+1)/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k+1)))))} \\ Paul D. Hanna, Jul 13 2014
for(n=0, 30, print1(a(n), ", "))
A187742
G.f.: Sum_{n>=0} (n+x)^n * x^n / (1 + n*x + x^2)^n.
Original entry on oeis.org
1, 1, 4, 14, 66, 384, 2640, 20880, 186480, 1854720, 20321280, 243129600, 3153427200, 44068147200, 660064204800, 10548573235200, 179151388416000, 3222109642752000, 61178237632512000, 1222853377794048000, 25667116186263552000, 564433265896980480000, 12977099311614197760000
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 14*x^3 + 66*x^4 + 384*x^5 + 2640*x^6 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (2+x)^2*x^2/(1+2*x+x^2)^2 + (3+x)^3*x^3/(1+3*x+x^2)^3 + (4+x)^4*x^4/(1+4*x+x^2)^4 + (5+x)^5*x^5/(1+5*x+x^2)^5 +...
-
List([3..11], n->Size(OrbitsDomain(Group((1,2)),SymmetricGroup(IsPermGroup, n), \^))); # Attila Egri-Nagy, Aug 15 2014
-
a[0] = 1; a[1] = 1; a[n_] := (n^2 + n + 2)*(n - 1)!/2; Table[a[n], {n, 0, 20}] (* Wesley Ivan Hurt, Aug 15 2014 *)
-
{a(n)=polcoeff( sum(m=0, n, (m+x)^m*x^m/(1+m*x+x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=if(n>=0&n<=1,1,(n^2+n+2)*(n-1)!/2)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) - x - log(1-x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
-
x='x+O('x^66); concat([1], Vec(serlaplace(1/(1-x)^3 + x/(1-x)))) \\ Joerg Arndt, Aug 15 2014
A204066
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (n + k*x) / (1 + n*x + k*x^2).
Original entry on oeis.org
1, 1, 4, 16, 82, 502, 3574, 29002, 264166, 2668666, 29612014, 358025986, 4684916902, 65966957722, 994546450174, 15984888286642, 272845934899606, 4929166716321706, 93963635086523374, 1884915966747571906, 39691711412770983622, 875410001054417122042, 20180907494704416823774
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 82*x^4 + 502*x^5 + 3574*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(2+x)*(2+2*x)/((1+2*x+x^2)*(1+2*x+2*x^2)) + x^3*(3+x)*(3+2*x)*(3+3*x)/((1+3*x+x^2)*(1+3*x+2*x^2)*(1+3*x+3*x^2)) + x^4*(4+x)*(4+2*x)*(4+3*x)*(4+4*x)/((1+4*x+x^2)*(1+4*x+2*x^2)*(1+4*x+3*x^2)*(1+4*x+4*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (m+k*x)/(1+m*x+k*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A202365
G.f.: Sum_{n>=0} (n-x)^n * x^n / (1 + n*x - x^2)^n.
Original entry on oeis.org
1, 1, 2, 10, 54, 336, 2400, 19440, 176400, 1774080, 19595520, 235872000, 3073593600, 43110144000, 647610163200, 10374216652800, 176536039680000, 3180264062976000, 60466862776320000, 1210048630382592000, 25423825985445888000, 559567461880627200000, 12874917427270778880000
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 54*x^4 + 336*x^5 + 2400*x^6 +...
where
A(x) = 1 + (1-x)*x/(1+x-x^2) + (2-x)^2*x^2/(1+2*x-x^2)^2 + (3-x)^3*x^3/(1+3*x-x^2)^3 + (4-x)^4*x^4/(1+4*x-x^2)^4 + (5-x)^5*x^5/(1+5*x-x^2)^5 +...
-
a[n_] := Switch[n, 0|1, 1, _, (n-1)*(n+2)/2*(n-1)!];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 24 2022 *)
-
{a(n)=polcoeff( sum(m=0, n, (m-x)^m*x^m/(1+m*x-x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=if(n==0||n==1, 1, (n-1)*(n+2)/2 * (n-1)!)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + x + log(1-x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
A208236
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + n*k*x) / (1 + x + n*k*x^2).
Original entry on oeis.org
1, 1, 1, 4, 10, 50, 208, 1290, 7456, 55982, 411796, 3650514, 32484460, 332970374, 3468625588, 40420787250, 481757564956, 6295577910182, 84407459209876, 1223095585594674, 18208380720893980, 289843786627539014, 4741844351895315028, 82269590167564595250
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 10*x^4 + 50*x^5 + 208*x^6 + 1290*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*1*x)*(1+2*2*x)/((1+x+2*1*x^2)*(1+x+2*2*x^2)) + x^3*(1+3*1*x)*(1+3*2*x)*(1+3*3*x)/((1+x+3*1*x^2)*(1+x+3*2*x^2)*(1+x+3*3*x^2)) + x^4*(1+4*1*x)*(1+4*2*x)*(1+4*3*x)*(1+4*4*x)/((1+x+4*1*x^2)*(1+x+4*2*x^2)*(1+x+4*3*x^2)*(1+x+4*4*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (1+m*k*x)/(1+x+m*k*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A361382
The orders, with repetition, of subset-transitive permutation groups.
Original entry on oeis.org
1, 2, 3, 6, 12, 20, 24, 60, 120, 120, 360, 720, 2520, 5040, 20160, 40320, 181440, 362880, 1814400, 3628800, 19958400, 39916800, 239500800, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000, 10461394944000, 20922789888000
Offset: 1
A210443
G.f.: Sum_{n>=0} x^n * (1 + n^2*x)^n / (1 + x + n^2*x^2)^n.
Original entry on oeis.org
1, 1, 1, 6, 21, 150, 962, 8640, 80220, 884520, 10709520, 140873040, 2098741680, 32163828480, 568234774800, 9957054159360, 203333391011520, 4013297314266240, 92967912795139200, 2041979786688441600, 52890421861957680000, 1279950952105367942400, 36648398470742114918400
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 6*x^3 + 21*x^4 + 150*x^5 + 962*x^6 + 8640*x^7 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+4*x)^2*x^2/(1+x+4*x^2)^2 + (1+9*x)^3*x^3/(1+x+9*x^2)^3 + (1+16*x)^4*x^4/(1+x+16*x^2)^4 + (1+25*x)^5*x^5/(1+x+25*x^2)^5 +...
-
{a(n)=polcoeff(sum(m=0, n, x^m*(1+m^2*x)^m/(1+x+m^2*x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
A222589
G.f. satisfies: A(x) = Sum_{n>=0} x^n*(1 + n*x)^n * A(x)^n / (1 + x*A(x) + n*x^2*A(x))^n.
Original entry on oeis.org
1, 1, 2, 5, 14, 41, 128, 409, 1355, 4564, 15728, 54904, 194740, 698042, 2532483, 9270351, 34268276, 127677731, 479723132, 1815553953, 6923744832, 26587139445, 102838915279, 400513959602, 1571152132075, 6206954038519, 24705172805012, 99071049959707, 400475021255313
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 41*x^5 + 128*x^6 + 409*x^7 +...
where:
A(x) = 1 + x*(1+x)*A(x)/(1+x*(1+x)*A(x)) + x^2*(1+2*x)^2*A(x)^2/(1+x*(1+2*x)*A(x))^2 + x^3*(1+3*x)^3*A(x)^3/(1+x*(1+3*x)*A(x))^3 + x^4*(1+4*x)^4*A(x)^4/(1+x*(1+4*x)*A(x))^4 +...
Also,
A(x) = 1/2 + (1 + 2*x*A(x))/2 * (1 + 2*x^2*A(x) + 6*x^4*A(x)^2 + 24*x^6*A(x)^3 + 120*x^8*A(x)^4 + 720*x^10*A(x)^5 + 5040*x^12*A(x)^6 +...).
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, (x+m*x^2)^m*A^m / (1 + x*A+m*x^2*A +x*O(x^n))^m));polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
-
{a(n)=local(A=1+x);for(i=1,n,A=1/2+(1+2*x*A)*sum(k=0,n,(k+1)!/2*x^(2*k)*(A+x*O(x^n))^k));polcoeff(A, n)}
for(n=0, 25, print1(a(n), ", "))
Showing 1-8 of 8 results.
Comments