cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A204064 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + n*x) / (1 + k*x + n*x^2).

Original entry on oeis.org

1, 1, 2, 5, 14, 44, 152, 572, 2324, 10124, 47012, 231572, 1204964, 6599444, 37924292, 228033332, 1431128804, 9354072404, 63548071172, 447923400692, 3270361265444, 24696229801364, 192625876675652, 1549890430643252, 12849460733123684, 109647468132256724
Offset: 0

Views

Author

Paul D. Hanna, Jan 09 2013

Keywords

Comments

Compare to the identity:
Sum_{n>=0} x^n * Product_{k=1..n} (k + x) / (1 + k*x + x^2) = (1+x^2)/(1-x).
Compare to the g.f. of A187741:
Sum_{n>=0} x^n * (1 + n*x)^n / (1 + x + n*x^2)^n = 1/2 + (1+2*x)*Sum_{n>=0} (n+1)!*x^(2*n)/2.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 44*x^5 + 152*x^6 + 572*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + x^3*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + x^4*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, we have the identity (cf. A229046):
A(x) = 1/2 + (1/2)*(1+x)/(1+x) + (2!/2)*x*(1+x)^2/((1+x)*(1+2*x)) + (3!/2)*x^2*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + (4!/2)*x^3*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + (5!/2)*x^4*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k) option remember; `if`(n<1, 1, `if`(k>
          ceil(n/2), 0, add((k-j)*b(n-1-j, k-j), j=0..1)))
        end:
    a:= n-> ceil(add(b(n+2, k), k=1..1+ceil(n/2))/2):
    seq(a(n), n=0..25);  # Alois P. Heinz, Jan 26 2018
  • Mathematica
    b[n_, k_] := b[n, k] = If[n < 1, 1, If[k > Ceiling[n/2], 0, Sum[(k - j) b[n - 1 - j, k - j], {j, 0, 1}]]];
    a[n_] := Ceiling[Sum[b[n + 2, k], {k, 1, 1 + Ceiling[n/2]}]/2];
    Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1,m,(k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( 1/2 + sum(m=1, n+1, m!/2*x^(m-1)*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=if(n<0,0,if(n<1,1,(1/2)*sum(k=0, floor((n+1)/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k+1)))))} \\ Paul D. Hanna, Jul 13 2014
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1/2 + Sum_{n>=1} n!/2 * x^(n-1) * (1+x)^n / Product_{k=1..n} (1 + k*x). - Paul D. Hanna, Oct 27 2013
a(n) = A229046(n+1)/2 for n>0.
a(n) = (1/2)*Sum_{k=0..floor((n+1)/2)} Sum_{i=0..k} (-1)^i * C(k,i) * (k-i+1)^(n-k+1) for n>1. (See Paul Barry's formula in A105795). - Paul D. Hanna, Jul 13 2014

A187741 G.f.: Sum_{n>=0} (1 + n*x)^n * x^n / (1 + x + n*x^2)^n.

Original entry on oeis.org

1, 1, 1, 2, 3, 6, 12, 24, 60, 120, 360, 720, 2520, 5040, 20160, 40320, 181440, 362880, 1814400, 3628800, 19958400, 39916800, 239500800, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000, 10461394944000, 20922789888000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Comments

This is an enumeration of the disjoint union (with repetition) of A001710(n), for n > 0, and A000142(n), for n > 0. The first lists the orders of the alternating groups; the second lists the orders of the symmetric groups. - Hal M. Switkay, Mar 13 2023

Examples

			G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 24*x^7 + 60*x^8 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+2*x)^2*x^2/(1+x+2*x^2)^2 + (1+3*x)^3*x^3/(1+x+3*x^2)^3 + (1+4*x)^4*x^4/(1+x+4*x^2)^4 + (1+5*x)^5*x^5/(1+x+5*x^2)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := If[OddQ[n], ((n + 1)/2)!, (n/2 + 1)!/2]; a[0] = 1; Array[a, 32, 0] (* Amiram Eldar, Dec 11 2022 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, (x+m*x^2)^m / (1 + x+m*x^2 +x*O(x^n))^m), n)}
    for(n=0, 40, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1, if(n%2==0, ((n+2)/2)!/2, ((n+1)/2)! ))}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1/2 + (1+2*x) * Sum_{n>=0} (n+1)!*x^(2*n)/2.
a(2*n) = (n+1)!/2, a(2*n-1) = n!, for n>0 with a(0)=1.
From Amiram Eldar, Dec 11 2022: (Start)
Sum_{n>=0} 1/a(n) = 3*e - 4.
Sum_{n>=0} (-1)^n/a(n) = e - 2. (End)

A204066 G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (n + k*x) / (1 + n*x + k*x^2).

Original entry on oeis.org

1, 1, 4, 16, 82, 502, 3574, 29002, 264166, 2668666, 29612014, 358025986, 4684916902, 65966957722, 994546450174, 15984888286642, 272845934899606, 4929166716321706, 93963635086523374, 1884915966747571906, 39691711412770983622, 875410001054417122042, 20180907494704416823774
Offset: 0

Views

Author

Paul D. Hanna, Jan 09 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 82*x^4 + 502*x^5 + 3574*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(2+x)*(2+2*x)/((1+2*x+x^2)*(1+2*x+2*x^2)) + x^3*(3+x)*(3+2*x)*(3+3*x)/((1+3*x+x^2)*(1+3*x+2*x^2)*(1+3*x+3*x^2)) + x^4*(4+x)*(4+2*x)*(4+3*x)*(4+4*x)/((1+4*x+x^2)*(1+4*x+2*x^2)*(1+4*x+3*x^2)*(1+4*x+4*x^2)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (m+k*x)/(1+m*x+k*x^2 +x*O(x^n))) ), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) ~ exp(1/2) * n! * n/2. - Vaclav Kotesovec, Nov 02 2014

A187746 G.f.: Sum_{n>=0} (2*n+x)^n * x^n / (1 + 2*n*x + x^2)^n.

Original entry on oeis.org

1, 2, 13, 100, 984, 11712, 163200, 2603520, 46771200, 934133760, 20530298880, 492355584000, 12793813401600, 358063276032000, 10737974299852800, 343513154086502400, 11676590580695040000, 420271561157640192000, 15967576932074127360000
Offset: 0

Views

Author

Paul D. Hanna, Jan 03 2013

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 13*x^2 + 100*x^3 + 984*x^4 + 11712*x^5 +...
where
A(x) = 1 + (2+x)*x/(1+2*x+x^2) + (4+x)^2*x^2/(1+4*x+x^2)^2 + (6+x)^3*x^3/(1+6*x+x^2)^3 + (8+x)^4*x^4/(1+8*x+x^2)^4 + (10+x)^5*x^5/(1+10*x+x^2)^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, (2*m+x)^m*x^m/(1+2*m*x+x^2 +x*O(x^n))^m), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1,if(n==1,2,(2*n^2+2*n+1)*2^(n-2)*(n-1)!))}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(1/2 + 1/(2*(1-2*x)^2) - x/2 - log(1-2*x +x*O(x^n))/4, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = (2*n^2+2*n+1) * 2^(n-2) * (n-1)! for n>1 with a(0)=1, a(1)=2.
E.g.f.: 1/2 + 1/(2*(1-2*x)^2) - x/2 - log(1-2*x)/4.
E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 2/(1-2*x)^3 + x/(1-2*x).

A202365 G.f.: Sum_{n>=0} (n-x)^n * x^n / (1 + n*x - x^2)^n.

Original entry on oeis.org

1, 1, 2, 10, 54, 336, 2400, 19440, 176400, 1774080, 19595520, 235872000, 3073593600, 43110144000, 647610163200, 10374216652800, 176536039680000, 3180264062976000, 60466862776320000, 1210048630382592000, 25423825985445888000, 559567461880627200000, 12874917427270778880000
Offset: 0

Views

Author

Paul D. Hanna, Jan 09 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 54*x^4 + 336*x^5 + 2400*x^6 +...
where
A(x) = 1 + (1-x)*x/(1+x-x^2) + (2-x)^2*x^2/(1+2*x-x^2)^2 + (3-x)^3*x^3/(1+3*x-x^2)^3 + (4-x)^4*x^4/(1+4*x-x^2)^4 + (5-x)^5*x^5/(1+5*x-x^2)^5 +...
		

Crossrefs

Programs

  • Mathematica
    a[n_] := Switch[n, 0|1, 1, _, (n-1)*(n+2)/2*(n-1)!];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 24 2022 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, (m-x)^m*x^m/(1+m*x-x^2 +x*O(x^n))^m), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0||n==1, 1, (n-1)*(n+2)/2 * (n-1)!)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + x + log(1-x +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = (n-1)*(n+2)/2 * (n-1)!, for n>1 with a(0)=a(1)=1.
E.g.f.: 1/2 + 1/(2*(1-x)^2) + x + log(1-x).
E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 1/(1-x)^3 - x/(1-x).
From Amiram Eldar, Dec 23 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi^2/9 + 43/27.
Sum_{n>=0} (-1)^n/a(n) = Pi^2/18 - 4*log(2)/9 + 5/27. (End)

A243227 G.f.: Sum_{n>=0} n^(2*n) * x^n / (1 + n^2*x)^n.

Original entry on oeis.org

1, 1, 15, 602, 46620, 5921520, 1118557440, 294293759760, 102896614941120, 46150861752777600, 25832386565857872000, 17651395149921751680000, 14460364581345685626624000, 13990151265412450143375360000, 15782226575197809064309171200000, 20533602558350213132577801792768000
Offset: 0

Views

Author

Paul D. Hanna, Aug 21 2014

Keywords

Comments

Compare to: Sum_{n>=0} n^n * x^n / (1 + n*x)^n = 1 + Sum_{n>=1} (n+1)!/2 * x^n.

Examples

			G.f.: A(x) = 1 + x + 15*x^2 + 602*x^3 + 46620*x^4 + 5921520*x^5 +...
where
A(x) = 1 + x/(1+x) + 4^2*x^2/(1+4*x)^2 + 9^3*x^3/(1+9*x)^3 + 16^4*x^4/(1+16*x)^4 + 25^5*x^5/(1+25*x)^5 + 36^6*x^6/(1+36*x)^6 + 49^7*x^7/(1+49*x)^7 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1, Table[(n-1)! * StirlingS2[2*n+1, n],{n,1,20}]}] (* Vaclav Kotesovec, Nov 05 2014 *)
  • PARI
    {a(n)=polcoeff( sum(m=0, n, m^(2*m)*x^m/(1+m^2*x +x*O(x^n))^m), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0,1,sum(k=0, n-1, (-1)^(n-k-1) * binomial(n-1,k) * (k+1)^(2*n)))}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n) = if(n==0,1, (n-1)! * Stirling2(2*n+1, n) )}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n) = if(n==0,1,(2*n+1)!/n * polcoeff(((exp(x + x*O(x^(2*n+1))) - 1)^n), 2*n+1))}
    for(n=0, 20, print1(a(n), ", "))

Formula

a(n) = Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n-1,k) * (k+1)^(2*n) for n>0 with a(0)=1.
a(n) = (n-1)! * Stirling2(2*n+1, n) for n>0 with a(0)=1.
a(n) = (2*n+1)!/n * [x^(2*n+1)] (exp(x) - 1)^n for n>0 with a(0)=1.
a(n) ~ 2^(2*n+1) * n^(2*n) / (sqrt(1-c) * exp(2*n) * c^n * (2-c)^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775). - Vaclav Kotesovec, Nov 05 2014

A203799 G.f.: Sum_{n>=0} (n-2*x)^n * x^n / (1 + n*x - 2*x^2)^n.

Original entry on oeis.org

1, 1, 1, 8, 48, 312, 2280, 18720, 171360, 1733760, 19232640, 232243200, 3033676800, 42631142400, 641383142400, 10287038361600, 175228365312000, 3159341273088000, 60111175348224000, 1203646256676864000, 25302180885037056000, 557134559872450560000, 12823826485099069440000
Offset: 0

Views

Author

Paul D. Hanna, Jan 09 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 48*x^4 + 312*x^5 + 2280*x^6 +...
where
A(x) = 1 + (1-2*x)*x/(1+x-2*x^2) + (2-2*x)^2*x^2/(1+2*x-2*x^2)^2 + (3-2*x)^3*x^3/(1+3*x-2*x^2)^3 + (4-2*x)^4*x^4/(1+4*x-2*x^2)^4 + (5-2*x)^5*x^5/(1+5*x-2*x^2)^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, (m-2*x)^m*x^m/(1+m*x-2*x^2 +x*O(x^n))^m), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=if(n==0||n==1, 1, (n^2 + n - 4)/2 * (n-1)!)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + 2*x + 2*log(1-x +x*O(x^n)), n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) = (n^2 + n - 4)/2 * (n-1)!, for n>1 with a(0)=a(1)=1.
E.g.f.: 1/2 + 1/(2*(1-x)^2) + 2*x + 2*log(1-x).
E.g.f.: Sum_{n>=0} a(n+1)*x^n/n! = 1/(1-x)^3 - 2*x/(1-x).
Showing 1-7 of 7 results.