A204064
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + n*x) / (1 + k*x + n*x^2).
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 152, 572, 2324, 10124, 47012, 231572, 1204964, 6599444, 37924292, 228033332, 1431128804, 9354072404, 63548071172, 447923400692, 3270361265444, 24696229801364, 192625876675652, 1549890430643252, 12849460733123684, 109647468132256724
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 44*x^5 + 152*x^6 + 572*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + x^3*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + x^4*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, we have the identity (cf. A229046):
A(x) = 1/2 + (1/2)*(1+x)/(1+x) + (2!/2)*x*(1+x)^2/((1+x)*(1+2*x)) + (3!/2)*x^2*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + (4!/2)*x^3*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + (5!/2)*x^4*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
-
b:= proc(n, k) option remember; `if`(n<1, 1, `if`(k>
ceil(n/2), 0, add((k-j)*b(n-1-j, k-j), j=0..1)))
end:
a:= n-> ceil(add(b(n+2, k), k=1..1+ceil(n/2))/2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 26 2018
-
b[n_, k_] := b[n, k] = If[n < 1, 1, If[k > Ceiling[n/2], 0, Sum[(k - j) b[n - 1 - j, k - j], {j, 0, 1}]]];
a[n_] := Ceiling[Sum[b[n + 2, k], {k, 1, 1 + Ceiling[n/2]}]/2];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1,m,(k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( 1/2 + sum(m=1, n+1, m!/2*x^(m-1)*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=if(n<0,0,if(n<1,1,(1/2)*sum(k=0, floor((n+1)/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k+1)))))} \\ Paul D. Hanna, Jul 13 2014
for(n=0, 30, print1(a(n), ", "))
A187741
G.f.: Sum_{n>=0} (1 + n*x)^n * x^n / (1 + x + n*x^2)^n.
Original entry on oeis.org
1, 1, 1, 2, 3, 6, 12, 24, 60, 120, 360, 720, 2520, 5040, 20160, 40320, 181440, 362880, 1814400, 3628800, 19958400, 39916800, 239500800, 479001600, 3113510400, 6227020800, 43589145600, 87178291200, 653837184000, 1307674368000, 10461394944000, 20922789888000
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 3*x^4 + 6*x^5 + 12*x^6 + 24*x^7 + 60*x^8 +...
where
A(x) = 1 + (1+x)*x/(1+x+x^2) + (1+2*x)^2*x^2/(1+x+2*x^2)^2 + (1+3*x)^3*x^3/(1+x+3*x^2)^3 + (1+4*x)^4*x^4/(1+x+4*x^2)^4 + (1+5*x)^5*x^5/(1+x+5*x^2)^5 +...
-
a[n_] := If[OddQ[n], ((n + 1)/2)!, (n/2 + 1)!/2]; a[0] = 1; Array[a, 32, 0] (* Amiram Eldar, Dec 11 2022 *)
-
{a(n)=polcoeff( sum(m=0, n, (x+m*x^2)^m / (1 + x+m*x^2 +x*O(x^n))^m), n)}
for(n=0, 40, print1(a(n), ", "))
-
{a(n)=if(n==0,1, if(n%2==0, ((n+2)/2)!/2, ((n+1)/2)! ))}
for(n=0, 30, print1(a(n), ", "))
A204066
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (n + k*x) / (1 + n*x + k*x^2).
Original entry on oeis.org
1, 1, 4, 16, 82, 502, 3574, 29002, 264166, 2668666, 29612014, 358025986, 4684916902, 65966957722, 994546450174, 15984888286642, 272845934899606, 4929166716321706, 93963635086523374, 1884915966747571906, 39691711412770983622, 875410001054417122042, 20180907494704416823774
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 82*x^4 + 502*x^5 + 3574*x^6 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(2+x)*(2+2*x)/((1+2*x+x^2)*(1+2*x+2*x^2)) + x^3*(3+x)*(3+2*x)*(3+3*x)/((1+3*x+x^2)*(1+3*x+2*x^2)*(1+3*x+3*x^2)) + x^4*(4+x)*(4+2*x)*(4+3*x)*(4+4*x)/((1+4*x+x^2)*(1+4*x+2*x^2)*(1+4*x+3*x^2)*(1+4*x+4*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (m+k*x)/(1+m*x+k*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A187746
G.f.: Sum_{n>=0} (2*n+x)^n * x^n / (1 + 2*n*x + x^2)^n.
Original entry on oeis.org
1, 2, 13, 100, 984, 11712, 163200, 2603520, 46771200, 934133760, 20530298880, 492355584000, 12793813401600, 358063276032000, 10737974299852800, 343513154086502400, 11676590580695040000, 420271561157640192000, 15967576932074127360000
Offset: 0
G.f.: A(x) = 1 + 2*x + 13*x^2 + 100*x^3 + 984*x^4 + 11712*x^5 +...
where
A(x) = 1 + (2+x)*x/(1+2*x+x^2) + (4+x)^2*x^2/(1+4*x+x^2)^2 + (6+x)^3*x^3/(1+6*x+x^2)^3 + (8+x)^4*x^4/(1+8*x+x^2)^4 + (10+x)^5*x^5/(1+10*x+x^2)^5 +...
-
{a(n)=polcoeff( sum(m=0, n, (2*m+x)^m*x^m/(1+2*m*x+x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=if(n==0,1,if(n==1,2,(2*n^2+2*n+1)*2^(n-2)*(n-1)!))}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=n!*polcoeff(1/2 + 1/(2*(1-2*x)^2) - x/2 - log(1-2*x +x*O(x^n))/4, n)}
for(n=0, 30, print1(a(n), ", "))
A202365
G.f.: Sum_{n>=0} (n-x)^n * x^n / (1 + n*x - x^2)^n.
Original entry on oeis.org
1, 1, 2, 10, 54, 336, 2400, 19440, 176400, 1774080, 19595520, 235872000, 3073593600, 43110144000, 647610163200, 10374216652800, 176536039680000, 3180264062976000, 60466862776320000, 1210048630382592000, 25423825985445888000, 559567461880627200000, 12874917427270778880000
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 54*x^4 + 336*x^5 + 2400*x^6 +...
where
A(x) = 1 + (1-x)*x/(1+x-x^2) + (2-x)^2*x^2/(1+2*x-x^2)^2 + (3-x)^3*x^3/(1+3*x-x^2)^3 + (4-x)^4*x^4/(1+4*x-x^2)^4 + (5-x)^5*x^5/(1+5*x-x^2)^5 +...
-
a[n_] := Switch[n, 0|1, 1, _, (n-1)*(n+2)/2*(n-1)!];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Aug 24 2022 *)
-
{a(n)=polcoeff( sum(m=0, n, (m-x)^m*x^m/(1+m*x-x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=if(n==0||n==1, 1, (n-1)*(n+2)/2 * (n-1)!)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + x + log(1-x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
A243227
G.f.: Sum_{n>=0} n^(2*n) * x^n / (1 + n^2*x)^n.
Original entry on oeis.org
1, 1, 15, 602, 46620, 5921520, 1118557440, 294293759760, 102896614941120, 46150861752777600, 25832386565857872000, 17651395149921751680000, 14460364581345685626624000, 13990151265412450143375360000, 15782226575197809064309171200000, 20533602558350213132577801792768000
Offset: 0
G.f.: A(x) = 1 + x + 15*x^2 + 602*x^3 + 46620*x^4 + 5921520*x^5 +...
where
A(x) = 1 + x/(1+x) + 4^2*x^2/(1+4*x)^2 + 9^3*x^3/(1+9*x)^3 + 16^4*x^4/(1+16*x)^4 + 25^5*x^5/(1+25*x)^5 + 36^6*x^6/(1+36*x)^6 + 49^7*x^7/(1+49*x)^7 +...
-
Flatten[{1, Table[(n-1)! * StirlingS2[2*n+1, n],{n,1,20}]}] (* Vaclav Kotesovec, Nov 05 2014 *)
-
{a(n)=polcoeff( sum(m=0, n, m^(2*m)*x^m/(1+m^2*x +x*O(x^n))^m), n)}
for(n=0, 20, print1(a(n), ", "))
-
{a(n)=if(n==0,1,sum(k=0, n-1, (-1)^(n-k-1) * binomial(n-1,k) * (k+1)^(2*n)))}
for(n=0,20,print1(a(n),", "))
-
{Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
{a(n) = if(n==0,1, (n-1)! * Stirling2(2*n+1, n) )}
for(n=0, 20, print1(a(n), ", "))
-
{a(n) = if(n==0,1,(2*n+1)!/n * polcoeff(((exp(x + x*O(x^(2*n+1))) - 1)^n), 2*n+1))}
for(n=0, 20, print1(a(n), ", "))
A203799
G.f.: Sum_{n>=0} (n-2*x)^n * x^n / (1 + n*x - 2*x^2)^n.
Original entry on oeis.org
1, 1, 1, 8, 48, 312, 2280, 18720, 171360, 1733760, 19232640, 232243200, 3033676800, 42631142400, 641383142400, 10287038361600, 175228365312000, 3159341273088000, 60111175348224000, 1203646256676864000, 25302180885037056000, 557134559872450560000, 12823826485099069440000
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 8*x^3 + 48*x^4 + 312*x^5 + 2280*x^6 +...
where
A(x) = 1 + (1-2*x)*x/(1+x-2*x^2) + (2-2*x)^2*x^2/(1+2*x-2*x^2)^2 + (3-2*x)^3*x^3/(1+3*x-2*x^2)^3 + (4-2*x)^4*x^4/(1+4*x-2*x^2)^4 + (5-2*x)^5*x^5/(1+5*x-2*x^2)^5 +...
-
{a(n)=polcoeff( sum(m=0, n, (m-2*x)^m*x^m/(1+m*x-2*x^2 +x*O(x^n))^m), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=if(n==0||n==1, 1, (n^2 + n - 4)/2 * (n-1)!)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=n!*polcoeff(1/2 + 1/(2*(1-x)^2) + 2*x + 2*log(1-x +x*O(x^n)), n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-7 of 7 results.
Comments