cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A226775 Decimal expansion of the number x other than -2 defined by x*exp(x) = -2/e^2.

Original entry on oeis.org

4, 0, 6, 3, 7, 5, 7, 3, 9, 9, 5, 9, 9, 5, 9, 9, 0, 7, 6, 7, 6, 9, 5, 8, 1, 2, 4, 1, 2, 4, 8, 3, 9, 7, 5, 8, 2, 1, 0, 9, 9, 7, 5, 7, 5, 1, 8, 1, 1, 4, 0, 6, 3, 5, 0, 0, 0, 4, 9, 5, 4, 8, 8, 3, 0, 3, 9, 1, 5, 0, 1, 5, 1, 8, 3, 8, 1, 2, 0, 4, 9, 7, 6, 7, 2, 5, 0, 0, 7, 2, 3, 3, 8, 1, 5, 5, 9, 2, 8, 5, 8, 2, 9, 3, 8
Offset: 0

Views

Author

Keywords

Examples

			-0.4063757399599599076769581241248397582109975751811406350004954883....
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[ProductLog[-2/E^2], 105]][[1]] (* corrected by Vaclav Kotesovec, Feb 21 2014 *)
  • PARI
    solve(x=-1, x=0, x*exp(x) + 2*exp(-2)) \\ G. C. Greubel, Nov 15 2017

Formula

Equals -2*A106533.
Equals LambertW(-2*exp(-2)).

A247238 a(n) = Stirling2(2*n+1, n).

Original entry on oeis.org

1, 15, 301, 7770, 246730, 9321312, 408741333, 20415995028, 1144614626805, 71187132291275, 4864251308951100, 362262620784874680, 29206898819153109600, 2534474684137526739000, 235535731151727520125765, 23339590705557273894321960
Offset: 1

Views

Author

Vladimir Kruchinin, Nov 28 2014

Keywords

Examples

			O.g.f.: A(x) = x + 15*x^2 + 301*x^3 + 7770*x^4 + 246730*x^5 + 9321312*x^6 + ... where A(x) = 1^3*x*exp(-1^2*x) + 2^5*exp(-2^2*x)*x^2/2! + 3^7*exp(-3^2*x)*x^3/3! + 4^9*exp(-4^2*x)*x^4/4! + 5^11*exp(-5^2*x)*x^5/5! + ...
		

Crossrefs

Programs

  • Mathematica
    Table[StirlingS2[2*n+1, n], {n, 1, 20}] (* Vaclav Kotesovec, Nov 29 2014 *)
  • PARI
    vector(50, n, stirling(2*n+1, n, 2)) \\ Colin Barker, Nov 28 2014

Formula

a(n) = A243227(n) / (n-1)!. - Vaclav Kotesovec, Nov 29 2014
a(n) ~ 2^(2*n+1/2) * n^(n+1/2) / (sqrt(Pi) * sqrt(1-c) * exp(n) * c^n * (2-c)^(n+1)), where c = -LambertW(-2*exp(-2)) = 0.4063757399599599... (see A226775). - Vaclav Kotesovec, Nov 29 2014
O.g.f. Sum_{n>=1} n^(2*n+1) * x^n * exp(-n^2*x) / n! = Sum_{n>=1} a(n)*x^n. - Paul D. Hanna, Oct 09 2023
Showing 1-2 of 2 results.