A204064
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + n*x) / (1 + k*x + n*x^2).
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 152, 572, 2324, 10124, 47012, 231572, 1204964, 6599444, 37924292, 228033332, 1431128804, 9354072404, 63548071172, 447923400692, 3270361265444, 24696229801364, 192625876675652, 1549890430643252, 12849460733123684, 109647468132256724
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 44*x^5 + 152*x^6 + 572*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + x^3*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + x^4*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, we have the identity (cf. A229046):
A(x) = 1/2 + (1/2)*(1+x)/(1+x) + (2!/2)*x*(1+x)^2/((1+x)*(1+2*x)) + (3!/2)*x^2*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + (4!/2)*x^3*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + (5!/2)*x^4*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
-
b:= proc(n, k) option remember; `if`(n<1, 1, `if`(k>
ceil(n/2), 0, add((k-j)*b(n-1-j, k-j), j=0..1)))
end:
a:= n-> ceil(add(b(n+2, k), k=1..1+ceil(n/2))/2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 26 2018
-
b[n_, k_] := b[n, k] = If[n < 1, 1, If[k > Ceiling[n/2], 0, Sum[(k - j) b[n - 1 - j, k - j], {j, 0, 1}]]];
a[n_] := Ceiling[Sum[b[n + 2, k], {k, 1, 1 + Ceiling[n/2]}]/2];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1,m,(k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( 1/2 + sum(m=1, n+1, m!/2*x^(m-1)*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=if(n<0,0,if(n<1,1,(1/2)*sum(k=0, floor((n+1)/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k+1)))))} \\ Paul D. Hanna, Jul 13 2014
for(n=0, 30, print1(a(n), ", "))
A105795
Shallow diagonal sums of the triangle k!*Stirling2(n,k): a(n) = Sum_{k=0..floor(n/2)} T(n-k,k) where T is A019538.
Original entry on oeis.org
1, 0, 1, 1, 3, 7, 21, 67, 237, 907, 3741, 16507, 77517, 385627, 2024301, 11174587, 64673997, 391392667, 2470864941, 16237279867, 110858862477, 784987938907, 5755734591981, 43636725010747, 341615028340557, 2758165832945947, 22940755633301421, 196354180631212027
Offset: 0
a(8) = 1!*Stirling2(7,1) + 2!*Stirling2(6,2) + 3!*Stirling2(5,3) + 4!*Stirling2(4,4) = 1 + 62 + 150 + 24 = 237. - _Peter Bala_, Jul 09 2014
-
a:= n-> add(Stirling2(n-k, k)*k!, k=0..n/2):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 09 2014
-
Table[Sum[StirlingS2[n-k, k]*k!, {k,0,n/2}],{n,0,20}] (* Vaclav Kotesovec, Jul 16 2014 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
Table[Sum[Length[Join@@Permutations/@Select[sps[Range[n-k]],Length[#]==k&]],{k,0,n}],{n,0,10}] (* Gus Wiseman, Jan 08 2019 *)
-
/* From Paul Barry's formula: */
{a(n)=sum(k=0,floor(n/2), sum(i=0,k,(-1)^i*binomial(k, i)*(k-i)^(n-k)))} \\ Paul D. Hanna, Dec 28 2013
for(n=0,30,print1(a(n),", "))
-
/* From e.g.f. series involving iterated integration: */
{INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
{a(n)=local(A=1+x);A=1+sum(k=1,n,INTEGRATE(k,(exp(x+x*O(x^n))-1)^k ));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013
Original entry on oeis.org
1, 1, 3, 9, 29, 101, 379, 1525, 6549, 29889, 144419, 736241, 3947725, 22201549, 130624587, 802180701, 5131183301, 34121977865, 235486915507, 1683925343929, 12458499203901, 95237603403381, 751291094637083, 6108883628141189, 51144808472958709, 440444879385258001
Offset: 0
The 9 sequences for n=4 (sorted by maximum)
1121,1122,2211,2212, 1113,2223,3331,3332, 4444
The 29 sequences for n=5 (sorted by maximum)
11211,11212,11221,11222, 22111,22112,22121,22122, 11123,11131,11132,11133, 22213,22231,22232,22233, 33311,33312,33313,33321,33322,33323, 11114, 22224, 33334, 44441,44442,44443, 55555
First differences of column 0 of triangle
A089246 (beginning at row 1). With offset 1, first differences of column 0 of triangle
A242431. Second differences of column 0 of triangle
A101494.
-
a[n_]:= If[n==0, 1, n + Sum[(i-1)^2*i^(n-i), {i,0,n}]];
Table[a[n], {n, 0, 30}] (* G. C. Greubel, Jan 12 2022 *)
-
a(n) = n + sum(i = 0, n, (n-i-1)^2 * (n-i)^i); \\ Michel Marcus, Mar 01 2021
-
[n +sum((j-1)^2*j^(n-j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jan 12 2022
Combinatorial interpretation and examples by
Olivier Gérard, Jan 29 2023
A245373
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 2*(n+1)*x) ).
Original entry on oeis.org
1, 2, 6, 20, 80, 368, 1904, 10880, 67904, 459008, 3336704, 25925120, 214175744, 1873092608, 17276401664, 167504076800, 1702214549504, 18084149854208, 200388963958784, 2311212530401280, 27693720143396864, 344157474490155008, 4428851361694613504, 58933575269230837760
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 20*x^3 + 80*x^4 + 368*x^5 + 1904*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-2*x)) + x/((1+x)^2*(1-4*x)) + x^2/((1+x)^3*(1-6*x))+ x^3/((1+x)^4*(1-8*x))+ x^4/((1+x)^5*(1-10*x)) + x^5/((1+x)^6*(1-12*x)) +...
is equal to
A(x) = 1 + 2*x*(1+x)/(1+2*x) + 2!*(2*x)^2*(1+x)^2/((1+2*x)*(1+4*x)) + 3!*(2*x)^3*(1+x)^3/((1+2*x)*(1+4*x)*(1+6*x)) + 4!*(2*x)^4*(1+x)^4/((1+2*x)*(1+4*x)*(1+6*x)*(1+8*x)) + 5!*(2*x)^5*(1+x)^5/((1+2*x)*(1+4*x)*(1+6*x)*(1+8*x)*(1+10*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 2*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 2^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+2*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*2^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245374
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 3*(n+1)*x) ).
Original entry on oeis.org
1, 3, 12, 54, 288, 1782, 12474, 96714, 819882, 7536402, 74610234, 790692354, 8921660922, 106687646802, 1346863560714, 17890362862434, 249297686894682, 3634756665823602, 55317506662094634, 876911386062810114, 14451743847813157242, 247171758180997987602, 4380263376360686471754
Offset: 0
G.f.: A(x) = 1 + 3*x + 12*x^2 + 54*x^3 + 288*x^4 + 1782*x^5 + 12474*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-3*x)) + x/((1+x)^2*(1-6*x)) + x^2/((1+x)^3*(1-9*x))+ x^3/((1+x)^4*(1-12*x))+ x^4/((1+x)^5*(1-15*x)) + x^5/((1+x)^6*(1-18*x)) +...
is equal to
A(x) = 1 + 3*x*(1+x)/(1+3*x) + 2!*(3*x)^2*(1+x)^2/((1+3*x)*(1+6*x)) + 3!*(3*x)^3*(1+x)^3/((1+3*x)*(1+6*x)*(1+9*x)) + 4!*(3*x)^4*(1+x)^4/((1+3*x)*(1+6*x)*(1+9*x)*(1+12*x)) + 5!*(3*x)^5*(1+x)^5/((1+3*x)*(1+6*x)*(1+9*x)*(1+12*x)*(1+15*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 3*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 3^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+3*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*3^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245375
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 4*(n+1)*x) ).
Original entry on oeis.org
1, 4, 20, 112, 736, 5632, 49024, 474112, 5017600, 57597952, 712597504, 9446981632, 133474877440, 2000265674752, 31666683510784, 527786775150592, 9233419259084800, 169106747636580352, 3234542505882025984, 64473076850860490752, 1336621867385969704960, 28769619371258703511552
Offset: 0
G.f.: A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 736*x^4 + 5632*x^5 + 49024*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-4*x)) + x/((1+x)^2*(1-8*x)) + x^2/((1+x)^3*(1-12*x))+ x^3/((1+x)^4*(1-16*x))+ x^4/((1+x)^5*(1-20*x)) + x^5/((1+x)^6*(1-24*x)) +...
is equal to
A(x) = 1 + 4*x*(1+x)/(1+4*x) + 2!*(4*x)^2*(1+x)^2/((1+4*x)*(1+8*x)) + 3!*(4*x)^3*(1+x)^3/((1+4*x)*(1+8*x)*(1+12*x)) + 4!*(4*x)^4*(1+x)^4/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)) + 5!*(4*x)^5*(1+x)^5/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)*(1+20*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 4*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 4^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+4*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*4^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245376
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 5*(n+1)*x) ).
Original entry on oeis.org
1, 5, 30, 200, 1550, 14000, 144500, 1662500, 20952500, 286437500, 4221312500, 66703437500, 1124194062500, 20109785937500, 380209901562500, 7571141773437500, 158312671414062500, 3466819503710937500, 79316483272226562500, 1891747084452148437500, 46942864023040039062500
Offset: 0
G.f.: A(x) = 1 + 5*x + 30*x^2 + 200*x^3 + 1550*x^4 + 14000*x^5 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-5*x)) + x/((1+x)^2*(1-10*x)) + x^2/((1+x)^3*(1-15*x))+ x^3/((1+x)^4*(1-20*x))+ x^4/((1+x)^5*(1-25*x)) + x^5/((1+x)^6*(1-30*x)) +...
is equal to
A(x) = 1 + 5*x*(1+x)/(1+5*x) + 2!*(5*x)^2*(1+x)^2/((1+5*x)*(1+10*x)) + 3!*(5*x)^3*(1+x)^3/((1+5*x)*(1+10*x)*(1+15*x)) + 4!*(5*x)^4*(1+x)^4/((1+5*x)*(1+10*x)*(1+15*x)*(1+20*x)) + 5!*(5*x)^5*(1+x)^5/((1+5*x)*(1+10*x)*(1+15*x)*(1+20*x)*(1+25*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 5*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 5^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+5*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*5^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245156
G.f.: Sum_{n>=0} x^n/((1+x)^(2*n)*(1 - (2*n)*x)).
Original entry on oeis.org
1, 1, 1, 4, 13, 51, 234, 1205, 6861, 42696, 287893, 2088343, 16195822, 133582909, 1166593665, 10746339324, 104072482781, 1056515903547, 11213782563474, 124152537651877, 1430804512710901, 17131971790847440, 212761333257548485, 2736258689605227615, 36389676240341831766
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 13*x^4 + 51*x^5 + 234*x^6 +...
where
A(x) = 1 + x/((1+x)^2*(1-2*x)) + x^2/((1+x)^4*(1-4*x)) + x^3/((1+x)^6*(1-6*x))+ x^4/((1+x)^8*(1-8*x))+ x^5/((1+x)^10*(1-10*x)) + x^6/((1+x)^12*(1-12*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(2*m)*(1 - 2*m*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
A245157
G.f.: Sum_{n>=0} x^n/((1+x)^(2*n+1)*(1 - (2*n+1)*x)).
Original entry on oeis.org
1, 1, 2, 7, 25, 108, 525, 2841, 16926, 109795, 768721, 5769848, 46170841, 392042257, 3517885530, 33240220095, 329703176361, 3423448119588, 37121182883557, 419414109036649, 4927952017449398, 60105139223521051, 759744837538329121, 9937680363610804080, 134328047043765078705
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 25*x^4 + 108*x^5 + 525*x^6 +...
where
A(x) = 1/((1+x)*(1-x)) + x/((1+x)^3*(1-3*x)) + x^2/((1+x)^5*(1-5*x))+ x^3/((1+x)^7*(1-7*x))+ x^4/((1+x)^9*(1-9*x)) + x^5/((1+x)^11*(1-11*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(2*m+1)*(1 - (2*m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
A298668
Number T(n,k) of set partitions of [n] into k blocks such that the absolute difference between least elements of consecutive blocks is always > 1; triangle T(n,k), n>=0, 0<=k<=ceiling(n/2), read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 3, 0, 1, 7, 2, 0, 1, 15, 12, 0, 1, 31, 50, 6, 0, 1, 63, 180, 60, 0, 1, 127, 602, 390, 24, 0, 1, 255, 1932, 2100, 360, 0, 1, 511, 6050, 10206, 3360, 120, 0, 1, 1023, 18660, 46620, 25200, 2520, 0, 1, 2047, 57002, 204630, 166824, 31920, 720
Offset: 0
T(5,1) = 1: 12345.
T(5,2) = 7: 1234|5, 1235|4, 123|45, 1245|3, 124|35, 125|34, 12|345.
T(5,3) = 2: 124|3|5, 12|34|5.
T(7,4) = 6: 1246|3|5|7, 124|36|5|7, 124|3|56|7, 126|34|5|7, 12|346|5|7, 12|34|56|7.
T(9,5) = 24: 12468|3|5|7|9, 1246|38|5|7|9, 1246|3|58|7|9, 1246|3|5|78|9, 1248|36|5|7|9, 124|368|5|7|9, 124|36|58|7|9, 124|36|5|78|9, 1248|3|56|7|9, 124|38|56|7|9, 124|3|568|7|9, 124|3|56|78|9, 1268|34|5|7|9, 126|348|5|7|9, 126|34|58|7|9, 126|34|5|78|9, 128|346|5|7|9, 12|3468|5|7|9, 12|346|58|7|9, 12|346|5|78|9, 128|34|56|7|9, 12|348|56|7|9, 12|34|568|7|9, 12|34|56|78|9.
Triangle T(n,k) begins:
1;
0, 1;
0, 1;
0, 1, 1;
0, 1, 3;
0, 1, 7, 2;
0, 1, 15, 12;
0, 1, 31, 50, 6;
0, 1, 63, 180, 60;
0, 1, 127, 602, 390, 24;
0, 1, 255, 1932, 2100, 360;
0, 1, 511, 6050, 10206, 3360, 120;
0, 1, 1023, 18660, 46620, 25200, 2520;
...
Columns k=0-11 give (offsets may differ):
A000007,
A057427,
A168604,
A028243,
A028244,
A028245,
A032180,
A228909,
A228910,
A228911,
A228912,
A228913.
Row sums give
A229046(n-1) for n>0.
-
b:= proc(n, m, t) option remember; `if`(n=0, x^m, add(
b(n-1, max(m, j), `if`(j>m, 1, 0)), j=1..m+1-t))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)):
seq(T(n), n=0..14);
# second Maple program:
T:= (n, k)-> `if`(k=0, `if`(n=0, 1, 0), (k-1)!*Stirling2(n-k+1, k)):
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
# third Maple program:
T:= proc(n, k) option remember; `if`(k<2, `if`(n=0 xor k=0, 0, 1),
`if`(k>ceil(n/2), 0, add((k-j)*T(n-1-j, k-j), j=0..1)))
end:
seq(seq(T(n, k), k=0..ceil(n/2)), n=0..14);
-
T[n_, k_] := T[n, k] = If[k < 2, If[Xor[n == 0, k == 0], 0, 1],
If[k > Ceiling[n/2], 0, Sum[(k-j) T[n-1-j, k-j], {j, 0, 1}]]];
Table[Table[T[n, k], {k, 0, Ceiling[n/2]}], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 08 2021, after third Maple program *)
Showing 1-10 of 11 results.
Comments