A229046
G.f.: Sum_{n>=0} n! * x^n * (1+x)^n / Product_{k=1..n} (1 + k*x).
Original entry on oeis.org
1, 1, 2, 4, 10, 28, 88, 304, 1144, 4648, 20248, 94024, 463144, 2409928, 13198888, 75848584, 456066664, 2862257608, 18708144808, 127096142344, 895846801384, 6540722530888, 49392459602728, 385251753351304, 3099780861286504, 25698921466247368, 219294936264513448
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 304*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x) + 2!*x^2*(1+x)^2/((1+x)*(1+2*x)) + 3!*x^3*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*x^4*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 5!*x^5*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
Also, we have the identity (cf. A204064):
A(x) = 1 + x + 2*x^2*(1+x)/(1+x+x^2) + 2*x^3*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + 2*x^4*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + 2*x^5*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, by Peter Bala's o.g.f.:
A(x) = 1/((1+x)*(1-x)) + x/((1+x)^2*(1-2*x)) + x^2/((1+x)^3*(1-3*x))+ x^3/((1+x)^4*(1-4*x))+ x^4/((1+x)^5*(1-5*x)) + x^5/((1+x)^6*(1-6*x)) +...
-
a:= n-> add(k!*Stirling2(n-k+1,k+1), k=0..floor(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 24 2018
-
a[n_] := Sum[k!*StirlingS2[n-k+1, k+1], {k, 0, n/2}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 25 2018, after Alois P. Heinz *)
-
a(n)=polcoeff( sum(m=0, n, m!*x^m*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)
for(n=0,30,print1(a(n),", "))
-
a(n)=polcoeff( 1-x + 2*x*sum(m=0, n, x^m*prod(k=1, m, (k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)
for(n=0,30,print1(a(n), ", "))
-
/* After Peter Bala: Sum_{n>=0} x^n/((1+x)^(n+1)*(1 - (n+1)*x)) */
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x) +x*O(x^n))), n)} \\ Paul D. Hanna, Jul 13 2014
for(n=0,30,print1(a(n), ", "))
-
a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k,i)*(k-i+1)^(n-k)))
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 13 2014
A245374
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 3*(n+1)*x) ).
Original entry on oeis.org
1, 3, 12, 54, 288, 1782, 12474, 96714, 819882, 7536402, 74610234, 790692354, 8921660922, 106687646802, 1346863560714, 17890362862434, 249297686894682, 3634756665823602, 55317506662094634, 876911386062810114, 14451743847813157242, 247171758180997987602, 4380263376360686471754
Offset: 0
G.f.: A(x) = 1 + 3*x + 12*x^2 + 54*x^3 + 288*x^4 + 1782*x^5 + 12474*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-3*x)) + x/((1+x)^2*(1-6*x)) + x^2/((1+x)^3*(1-9*x))+ x^3/((1+x)^4*(1-12*x))+ x^4/((1+x)^5*(1-15*x)) + x^5/((1+x)^6*(1-18*x)) +...
is equal to
A(x) = 1 + 3*x*(1+x)/(1+3*x) + 2!*(3*x)^2*(1+x)^2/((1+3*x)*(1+6*x)) + 3!*(3*x)^3*(1+x)^3/((1+3*x)*(1+6*x)*(1+9*x)) + 4!*(3*x)^4*(1+x)^4/((1+3*x)*(1+6*x)*(1+9*x)*(1+12*x)) + 5!*(3*x)^5*(1+x)^5/((1+3*x)*(1+6*x)*(1+9*x)*(1+12*x)*(1+15*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 3*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 3^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+3*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*3^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245375
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 4*(n+1)*x) ).
Original entry on oeis.org
1, 4, 20, 112, 736, 5632, 49024, 474112, 5017600, 57597952, 712597504, 9446981632, 133474877440, 2000265674752, 31666683510784, 527786775150592, 9233419259084800, 169106747636580352, 3234542505882025984, 64473076850860490752, 1336621867385969704960, 28769619371258703511552
Offset: 0
G.f.: A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 736*x^4 + 5632*x^5 + 49024*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-4*x)) + x/((1+x)^2*(1-8*x)) + x^2/((1+x)^3*(1-12*x))+ x^3/((1+x)^4*(1-16*x))+ x^4/((1+x)^5*(1-20*x)) + x^5/((1+x)^6*(1-24*x)) +...
is equal to
A(x) = 1 + 4*x*(1+x)/(1+4*x) + 2!*(4*x)^2*(1+x)^2/((1+4*x)*(1+8*x)) + 3!*(4*x)^3*(1+x)^3/((1+4*x)*(1+8*x)*(1+12*x)) + 4!*(4*x)^4*(1+x)^4/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)) + 5!*(4*x)^5*(1+x)^5/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)*(1+20*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 4*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 4^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+4*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*4^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245376
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 5*(n+1)*x) ).
Original entry on oeis.org
1, 5, 30, 200, 1550, 14000, 144500, 1662500, 20952500, 286437500, 4221312500, 66703437500, 1124194062500, 20109785937500, 380209901562500, 7571141773437500, 158312671414062500, 3466819503710937500, 79316483272226562500, 1891747084452148437500, 46942864023040039062500
Offset: 0
G.f.: A(x) = 1 + 5*x + 30*x^2 + 200*x^3 + 1550*x^4 + 14000*x^5 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-5*x)) + x/((1+x)^2*(1-10*x)) + x^2/((1+x)^3*(1-15*x))+ x^3/((1+x)^4*(1-20*x))+ x^4/((1+x)^5*(1-25*x)) + x^5/((1+x)^6*(1-30*x)) +...
is equal to
A(x) = 1 + 5*x*(1+x)/(1+5*x) + 2!*(5*x)^2*(1+x)^2/((1+5*x)*(1+10*x)) + 3!*(5*x)^3*(1+x)^3/((1+5*x)*(1+10*x)*(1+15*x)) + 4!*(5*x)^4*(1+x)^4/((1+5*x)*(1+10*x)*(1+15*x)*(1+20*x)) + 5!*(5*x)^5*(1+x)^5/((1+5*x)*(1+10*x)*(1+15*x)*(1+20*x)*(1+25*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 5*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 5^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+5*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*5^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245378
G.f. satisfies: A(x) = Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - (n+1)*x*A(x)) ).
Original entry on oeis.org
1, 1, 3, 10, 39, 165, 743, 3507, 17199, 87126, 454159, 2430031, 13326623, 74856230, 430628069, 2538270783, 15343363603, 95233568052, 607850790015, 3996223189468, 27105153736781, 189947851239185, 1376864409041417, 10330672337146804, 80248762443834399, 645206035074873681
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 39*x^4 + 165*x^5 + 743*x^6 +...
where we have the following identity:
A(x) = 1/((1+x)*(1-x*A(x))) + x/((1+x)^2*(1-2*x*A(x))) + x^2/((1+x)^3*(1-3*x*A(x)))+ x^3/((1+x)^4*(1-4*x*A(x)))+ x^4/((1+x)^5*(1-5*x*A(x))) + x^5/((1+x)^6*(1-6*x*A(x))) +...
is equal to
A(x) = 1 + x*A(x)*(1+x)/(1+x*A(x)) + 2!*x^2*A(x)^2*(1+x)^2/((1+x*A(x))*(1+2*x*A(x))) + 3!*x^3*A(x)^3*(1+x)^3/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))) + 4!*x^4*A(x)^4*(1+x)^4/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))) + 5!*x^5*A(x)^5*(1+x)^5/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))*(1+5*x*A(x))) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x*A +x*O(x^n)))));polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, m!*x^m*A^m*(1+x)^m/prod(k=1, m, 1+k*x*A +x*O(x^n))));polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments