cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A229046 G.f.: Sum_{n>=0} n! * x^n * (1+x)^n / Product_{k=1..n} (1 + k*x).

Original entry on oeis.org

1, 1, 2, 4, 10, 28, 88, 304, 1144, 4648, 20248, 94024, 463144, 2409928, 13198888, 75848584, 456066664, 2862257608, 18708144808, 127096142344, 895846801384, 6540722530888, 49392459602728, 385251753351304, 3099780861286504, 25698921466247368, 219294936264513448
Offset: 0

Views

Author

Paul D. Hanna, Oct 27 2013

Keywords

Comments

a(n-1) is the number of set partitions of [n] such that the absolute difference between least elements of consecutive blocks is always > 1. a(4) = 10: 12345, 1234|5, 1235|4, 123|45, 1245|3, 124|35, 124|3|5, 125|34, 12|345, 12|34|5. - Alois P. Heinz, May 22 2017
Conjecturally, the number of sequences (e(1), ..., e(n)), 0 <= e(i) < i, such that there is no triple i < j < k with e(i) = e(k). [Martinez and Savage, 2.13] - Eric M. Schmidt, Jul 17 2017

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 304*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x) + 2!*x^2*(1+x)^2/((1+x)*(1+2*x)) + 3!*x^3*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*x^4*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 5!*x^5*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
Also, we have the identity (cf. A204064):
A(x) = 1 + x + 2*x^2*(1+x)/(1+x+x^2) + 2*x^3*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + 2*x^4*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + 2*x^5*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, by Peter Bala's o.g.f.:
A(x) = 1/((1+x)*(1-x)) + x/((1+x)^2*(1-2*x)) + x^2/((1+x)^3*(1-3*x))+ x^3/((1+x)^4*(1-4*x))+ x^4/((1+x)^5*(1-5*x)) + x^5/((1+x)^6*(1-6*x)) +...
		

Crossrefs

Programs

  • Maple
    a:= n-> add(k!*Stirling2(n-k+1,k+1), k=0..floor(n/2)):
    seq(a(n), n=0..30);  # Alois P. Heinz, Jan 24 2018
  • Mathematica
    a[n_] := Sum[k!*StirlingS2[n-k+1, k+1], {k, 0, n/2}];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 25 2018, after Alois P. Heinz *)
  • PARI
    a(n)=polcoeff( sum(m=0, n, m!*x^m*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    a(n)=polcoeff( 1-x + 2*x*sum(m=0, n, x^m*prod(k=1, m, (k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)
    for(n=0,30,print1(a(n), ", "))
    
  • PARI
    /* After Peter Bala: Sum_{n>=0} x^n/((1+x)^(n+1)*(1 - (n+1)*x)) */
    {a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x) +x*O(x^n))), n)} \\ Paul D. Hanna, Jul 13 2014
    for(n=0,30,print1(a(n), ", "))
    
  • PARI
    a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k,i)*(k-i+1)^(n-k)))
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 13 2014

Formula

G.f.: 1+x + Sum_{n>=1} 2*x^(n+1) * Product_{k=1..n} (k + n*x)/(1 + k*x + n*x^2).
From Peter Bala, Jul 09 2014: (Start)
An alternative form of the o.g.f. appears to be the formal series A(x) = 1/(1 + x) * Sum_{n >= 0} 1/(1 - (n+1)*x)*(x/(1 + x))^n (checked up to a(26)). Cf. A105795.
Setting y = x/(1 + x) produces A(y) = (1 - y)^2*( Sum_{n >= 0} y^n/(1 - (n + 2)*y) ) = 1 + y + 3*y^2 + 9*y^3 + ..., the generating function for A112532. (End)
a(n) = 2*A204064(n-1) for n>1.
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..k} (-1)^i * binomial(k,i) * (k-i+1)^(n-k). (See Paul Barry's formula in A105795). - Paul D. Hanna, Jul 13 2014
From Alois P. Heinz, Jan 24 2018: (Start)
a(n) = Sum_{k=0..floor(n/2)} k! * Stirling2(n-k+1,k+1).
a(n) = Sum_{k=1..ceiling((n+1)/2)} A298668(n+1,k). (End)

A245374 G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 3*(n+1)*x) ).

Original entry on oeis.org

1, 3, 12, 54, 288, 1782, 12474, 96714, 819882, 7536402, 74610234, 790692354, 8921660922, 106687646802, 1346863560714, 17890362862434, 249297686894682, 3634756665823602, 55317506662094634, 876911386062810114, 14451743847813157242, 247171758180997987602, 4380263376360686471754
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2014

Keywords

Examples

			G.f.: A(x) = 1 + 3*x + 12*x^2 + 54*x^3 + 288*x^4 + 1782*x^5 + 12474*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-3*x)) + x/((1+x)^2*(1-6*x)) + x^2/((1+x)^3*(1-9*x))+ x^3/((1+x)^4*(1-12*x))+ x^4/((1+x)^5*(1-15*x)) + x^5/((1+x)^6*(1-18*x)) +...
is equal to
A(x) = 1 + 3*x*(1+x)/(1+3*x) + 2!*(3*x)^2*(1+x)^2/((1+3*x)*(1+6*x)) + 3!*(3*x)^3*(1+x)^3/((1+3*x)*(1+6*x)*(1+9*x)) + 4!*(3*x)^4*(1+x)^4/((1+3*x)*(1+6*x)*(1+9*x)*(1+12*x)) + 5!*(3*x)^5*(1+x)^5/((1+3*x)*(1+6*x)*(1+9*x)*(1+12*x)*(1+15*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 3*(m+1)*x) +x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( sum(m=0, n, 3^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+3*k*x +x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*3^(n-k)))}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} n! * (3*x)^n * (1+x)^n / Product_{k=1..n} (1 + 3*k*x).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..k} (-1)^i * binomial(k,i) * 3^(n-k) * (k-i+1)^(n-k).

A245375 G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 4*(n+1)*x) ).

Original entry on oeis.org

1, 4, 20, 112, 736, 5632, 49024, 474112, 5017600, 57597952, 712597504, 9446981632, 133474877440, 2000265674752, 31666683510784, 527786775150592, 9233419259084800, 169106747636580352, 3234542505882025984, 64473076850860490752, 1336621867385969704960, 28769619371258703511552
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2014

Keywords

Examples

			G.f.: A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 736*x^4 + 5632*x^5 + 49024*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-4*x)) + x/((1+x)^2*(1-8*x)) + x^2/((1+x)^3*(1-12*x))+ x^3/((1+x)^4*(1-16*x))+ x^4/((1+x)^5*(1-20*x)) + x^5/((1+x)^6*(1-24*x)) +...
is equal to
A(x) = 1 + 4*x*(1+x)/(1+4*x) + 2!*(4*x)^2*(1+x)^2/((1+4*x)*(1+8*x)) + 3!*(4*x)^3*(1+x)^3/((1+4*x)*(1+8*x)*(1+12*x)) + 4!*(4*x)^4*(1+x)^4/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)) + 5!*(4*x)^5*(1+x)^5/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)*(1+20*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 4*(m+1)*x) +x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( sum(m=0, n, 4^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+4*k*x +x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*4^(n-k)))}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} n! * (4*x)^n * (1+x)^n / Product_{k=1..n} (1 + 4*k*x).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..k} (-1)^i * binomial(k,i) * 4^(n-k) * (k-i+1)^(n-k).

A245376 G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 5*(n+1)*x) ).

Original entry on oeis.org

1, 5, 30, 200, 1550, 14000, 144500, 1662500, 20952500, 286437500, 4221312500, 66703437500, 1124194062500, 20109785937500, 380209901562500, 7571141773437500, 158312671414062500, 3466819503710937500, 79316483272226562500, 1891747084452148437500, 46942864023040039062500
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2014

Keywords

Examples

			G.f.: A(x) = 1 + 5*x + 30*x^2 + 200*x^3 + 1550*x^4 + 14000*x^5 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-5*x)) + x/((1+x)^2*(1-10*x)) + x^2/((1+x)^3*(1-15*x))+ x^3/((1+x)^4*(1-20*x))+ x^4/((1+x)^5*(1-25*x)) + x^5/((1+x)^6*(1-30*x)) +...
is equal to
A(x) = 1 + 5*x*(1+x)/(1+5*x) + 2!*(5*x)^2*(1+x)^2/((1+5*x)*(1+10*x)) + 3!*(5*x)^3*(1+x)^3/((1+5*x)*(1+10*x)*(1+15*x)) + 4!*(5*x)^4*(1+x)^4/((1+5*x)*(1+10*x)*(1+15*x)*(1+20*x)) + 5!*(5*x)^5*(1+x)^5/((1+5*x)*(1+10*x)*(1+15*x)*(1+20*x)*(1+25*x)) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 5*(m+1)*x) +x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=polcoeff( sum(m=0, n, 5^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+5*k*x +x*O(x^n))), n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*5^(n-k)))}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: Sum_{n>=0} n! * (5*x)^n * (1+x)^n / Product_{k=1..n} (1 + 5*k*x).
a(n) = Sum_{k=0..floor(n/2)} Sum_{i=0..k} (-1)^i * binomial(k,i) * 5^(n-k) * (k-i+1)^(n-k).

A245378 G.f. satisfies: A(x) = Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - (n+1)*x*A(x)) ).

Original entry on oeis.org

1, 1, 3, 10, 39, 165, 743, 3507, 17199, 87126, 454159, 2430031, 13326623, 74856230, 430628069, 2538270783, 15343363603, 95233568052, 607850790015, 3996223189468, 27105153736781, 189947851239185, 1376864409041417, 10330672337146804, 80248762443834399, 645206035074873681
Offset: 0

Views

Author

Paul D. Hanna, Jul 19 2014

Keywords

Comments

Compare g.f. to an identity for C(x) = 1 + x*C(x)^2, the Catalan function:
C(x) = Sum_{n>=0} n! * x^n * C(x)^n / Product_{k=1..n} (1 + k*x*C(x)).

Examples

			G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 39*x^4 + 165*x^5 + 743*x^6 +...
where we have the following identity:
A(x) = 1/((1+x)*(1-x*A(x))) + x/((1+x)^2*(1-2*x*A(x))) + x^2/((1+x)^3*(1-3*x*A(x)))+ x^3/((1+x)^4*(1-4*x*A(x)))+ x^4/((1+x)^5*(1-5*x*A(x))) + x^5/((1+x)^6*(1-6*x*A(x))) +...
is equal to
A(x) = 1 + x*A(x)*(1+x)/(1+x*A(x)) + 2!*x^2*A(x)^2*(1+x)^2/((1+x*A(x))*(1+2*x*A(x))) + 3!*x^3*A(x)^3*(1+x)^3/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))) + 4!*x^4*A(x)^4*(1+x)^4/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))) + 5!*x^5*A(x)^5*(1+x)^5/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))*(1+5*x*A(x))) +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x*A +x*O(x^n)))));polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))
    
  • PARI
    {a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, m!*x^m*A^m*(1+x)^m/prod(k=1, m, 1+k*x*A +x*O(x^n))));polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. satisfies: A(x) = Sum_{n>=0} n! * x^n * A(x)^n * (1+x)^n / Product_{k=1..n} (1 + k*x*A(x)).
Showing 1-5 of 5 results.