A245373
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 2*(n+1)*x) ).
Original entry on oeis.org
1, 2, 6, 20, 80, 368, 1904, 10880, 67904, 459008, 3336704, 25925120, 214175744, 1873092608, 17276401664, 167504076800, 1702214549504, 18084149854208, 200388963958784, 2311212530401280, 27693720143396864, 344157474490155008, 4428851361694613504, 58933575269230837760
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 20*x^3 + 80*x^4 + 368*x^5 + 1904*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-2*x)) + x/((1+x)^2*(1-4*x)) + x^2/((1+x)^3*(1-6*x))+ x^3/((1+x)^4*(1-8*x))+ x^4/((1+x)^5*(1-10*x)) + x^5/((1+x)^6*(1-12*x)) +...
is equal to
A(x) = 1 + 2*x*(1+x)/(1+2*x) + 2!*(2*x)^2*(1+x)^2/((1+2*x)*(1+4*x)) + 3!*(2*x)^3*(1+x)^3/((1+2*x)*(1+4*x)*(1+6*x)) + 4!*(2*x)^4*(1+x)^4/((1+2*x)*(1+4*x)*(1+6*x)*(1+8*x)) + 5!*(2*x)^5*(1+x)^5/((1+2*x)*(1+4*x)*(1+6*x)*(1+8*x)*(1+10*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 2*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 2^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+2*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*2^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245375
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 4*(n+1)*x) ).
Original entry on oeis.org
1, 4, 20, 112, 736, 5632, 49024, 474112, 5017600, 57597952, 712597504, 9446981632, 133474877440, 2000265674752, 31666683510784, 527786775150592, 9233419259084800, 169106747636580352, 3234542505882025984, 64473076850860490752, 1336621867385969704960, 28769619371258703511552
Offset: 0
G.f.: A(x) = 1 + 4*x + 20*x^2 + 112*x^3 + 736*x^4 + 5632*x^5 + 49024*x^6 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-4*x)) + x/((1+x)^2*(1-8*x)) + x^2/((1+x)^3*(1-12*x))+ x^3/((1+x)^4*(1-16*x))+ x^4/((1+x)^5*(1-20*x)) + x^5/((1+x)^6*(1-24*x)) +...
is equal to
A(x) = 1 + 4*x*(1+x)/(1+4*x) + 2!*(4*x)^2*(1+x)^2/((1+4*x)*(1+8*x)) + 3!*(4*x)^3*(1+x)^3/((1+4*x)*(1+8*x)*(1+12*x)) + 4!*(4*x)^4*(1+x)^4/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)) + 5!*(4*x)^5*(1+x)^5/((1+4*x)*(1+8*x)*(1+12*x)*(1+16*x)*(1+20*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 4*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 4^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+4*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*4^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245376
G.f.: Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - 5*(n+1)*x) ).
Original entry on oeis.org
1, 5, 30, 200, 1550, 14000, 144500, 1662500, 20952500, 286437500, 4221312500, 66703437500, 1124194062500, 20109785937500, 380209901562500, 7571141773437500, 158312671414062500, 3466819503710937500, 79316483272226562500, 1891747084452148437500, 46942864023040039062500
Offset: 0
G.f.: A(x) = 1 + 5*x + 30*x^2 + 200*x^3 + 1550*x^4 + 14000*x^5 +...
where we have the following series identity:
A(x) = 1/((1+x)*(1-5*x)) + x/((1+x)^2*(1-10*x)) + x^2/((1+x)^3*(1-15*x))+ x^3/((1+x)^4*(1-20*x))+ x^4/((1+x)^5*(1-25*x)) + x^5/((1+x)^6*(1-30*x)) +...
is equal to
A(x) = 1 + 5*x*(1+x)/(1+5*x) + 2!*(5*x)^2*(1+x)^2/((1+5*x)*(1+10*x)) + 3!*(5*x)^3*(1+x)^3/((1+5*x)*(1+10*x)*(1+15*x)) + 4!*(5*x)^4*(1+x)^4/((1+5*x)*(1+10*x)*(1+15*x)*(1+20*x)) + 5!*(5*x)^5*(1+x)^5/((1+5*x)*(1+10*x)*(1+15*x)*(1+20*x)*(1+25*x)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - 5*(m+1)*x) +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( sum(m=0, n, 5^m*m!*x^m*(1+x)^m/prod(k=1, m, 1+5*k*x +x*O(x^n))), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k)*5^(n-k)))}
for(n=0, 30, print1(a(n), ", "))
A245378
G.f. satisfies: A(x) = Sum_{n>=0} x^n / ( (1+x)^(n+1) * (1 - (n+1)*x*A(x)) ).
Original entry on oeis.org
1, 1, 3, 10, 39, 165, 743, 3507, 17199, 87126, 454159, 2430031, 13326623, 74856230, 430628069, 2538270783, 15343363603, 95233568052, 607850790015, 3996223189468, 27105153736781, 189947851239185, 1376864409041417, 10330672337146804, 80248762443834399, 645206035074873681
Offset: 0
G.f.: A(x) = 1 + x + 3*x^2 + 10*x^3 + 39*x^4 + 165*x^5 + 743*x^6 +...
where we have the following identity:
A(x) = 1/((1+x)*(1-x*A(x))) + x/((1+x)^2*(1-2*x*A(x))) + x^2/((1+x)^3*(1-3*x*A(x)))+ x^3/((1+x)^4*(1-4*x*A(x)))+ x^4/((1+x)^5*(1-5*x*A(x))) + x^5/((1+x)^6*(1-6*x*A(x))) +...
is equal to
A(x) = 1 + x*A(x)*(1+x)/(1+x*A(x)) + 2!*x^2*A(x)^2*(1+x)^2/((1+x*A(x))*(1+2*x*A(x))) + 3!*x^3*A(x)^3*(1+x)^3/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))) + 4!*x^4*A(x)^4*(1+x)^4/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))) + 5!*x^5*A(x)^5*(1+x)^5/((1+x*A(x))*(1+2*x*A(x))*(1+3*x*A(x))*(1+4*x*A(x))*(1+5*x*A(x))) +...
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x*A +x*O(x^n)))));polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=local(A=1+x);for(i=1,n,A=sum(m=0, n, m!*x^m*A^m*(1+x)^m/prod(k=1, m, 1+k*x*A +x*O(x^n))));polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
Showing 1-4 of 4 results.
Comments