A026898
a(n) = Sum_{k=0..n} (n-k+1)^k.
Original entry on oeis.org
1, 2, 4, 9, 23, 66, 210, 733, 2781, 11378, 49864, 232769, 1151915, 6018786, 33087206, 190780213, 1150653921, 7241710930, 47454745804, 323154696185, 2282779990495, 16700904488706, 126356632390298, 987303454928973, 7957133905608837, 66071772829247410
Offset: 0
G.f.: A(x) = 1 + 2*x + 4*x^2 + 9*x^3 + 23*x^4 + 66*x^5 + 210*x^6 + ...
where we have the identity:
A(x) = 1/(1-x) + x/(1-2*x) + x^2/(1-3*x) + x^3/(1-4*x) + x^4/(1-5*x) + ...
is equal to
A(x) = 1/(1-x) + x/((1-x)^2*(1+x)) + 2!*x^2/((1-x)^3*(1+x)*(1+2*x)) + 3!*x^3/((1-x)^4*(1+x)*(1+2*x)*(1+3*x)) + 4!*x^4/((1-x)^5*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + ...
From _Joerg Arndt_, Mar 07 2015: (Start)
The a(5-1) = 23 RGS described in the comment are (dots denote zeros):
01: [ . . . . . ]
02: [ . 1 . . . ]
03: [ . 1 . . 1 ]
04: [ . 1 . 1 . ]
05: [ . 1 . 1 1 ]
06: [ . 1 1 . . ]
07: [ . 1 1 . 1 ]
08: [ . 1 1 1 . ]
09: [ . 1 1 1 1 ]
10: [ . 1 2 . . ]
11: [ . 1 2 . 1 ]
12: [ . 1 2 . 2 ]
13: [ . 1 2 1 . ]
14: [ . 1 2 1 1 ]
15: [ . 1 2 1 2 ]
16: [ . 1 2 2 . ]
17: [ . 1 2 2 1 ]
18: [ . 1 2 2 2 ]
19: [ . 1 2 3 . ]
20: [ . 1 2 3 1 ]
21: [ . 1 2 3 2 ]
22: [ . 1 2 3 3 ]
23: [ . 1 2 3 4 ]
(End)
- Reinhard Zumkeller, Table of n, a(n) for n = 0..500
- Fufa Beyene, Jörgen Backelin, Roberto Mantaci, and Samuel A. Fufa, Set Partitions and Other Bell Number Enumerated Objects, J. Int. Seq., Vol. 26 (2023), Article 23.1.8.
- Giulio Cerbai, Pattern-avoiding modified ascent sequences, arXiv:2401.10027 [math.CO], 2024. See p. 12.
- Giulio Cerbai and Anders Claesson, Counting fixed-point-free Cayley permutations, arXiv:2507.09304 [math.CO], 2025. See p. 25.
- Sajed Haque, Discriminators of Integer Sequences, 2017, See p. 33 Corollary 29.
- Mathematics Stack Exchange, Asymptotics of ..., 2011.
- Chunyan Yan and Zhicong Lin, Inversion sequences avoiding pairs of patterns, arXiv:1912.03674 [math.CO], 2019. See p. 3.
- Robin D. P. Zhou, Pattern avoidance in revised ascent sequences, arXiv:2505.05171 [math.CO], 2025. See p. 4.
-
a026898 n = sum $ zipWith (^) [n + 1, n .. 1] [0 ..]
-- Reinhard Zumkeller, Sep 14 2014
-
[(&+[(n-k+1)^k: k in [0..n]]): n in [0..50]]; // Stefano Spezia, Jan 09 2019
-
a:= n-> add((n+1-j)^j, j=0..n): seq(a(n), n=0..23); # Zerinvary Lajos, Apr 18 2009
-
Table[Sum[(n-k+1)^k, {k,0,n}], {n, 0, 25}] (* Michael De Vlieger, Apr 01 2015 *)
-
{a(n)=polcoeff(sum(m=0,n,x^m/(1-(m+1)*x+x*O(x^n))),n)} /* Paul D. Hanna, Sep 13 2011 */
-
{INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
{a(n)=local(A=1+x);A=sum(k=0,n,INTEGRATE(k,exp((k+1)*x+x*O(x^n))));n!*polcoeff(A,n)} \\ Paul D. Hanna, Dec 28 2013
for(n=0,30,print1(a(n),", "))
-
{a(n)=polcoeff( sum(m=0, n, m!*x^m/(1-x +x*O(x^n))^(m+1)/prod(k=1, m, 1+k*x +x*O(x^n))), n)} /* From o.g.f. (Paul D. Hanna, Jul 20 2014) */
for(n=0, 25, print1(a(n), ", "))
-
[sum((n-j+1)^j for j in (0..n)) for n in (0..30)] # G. C. Greubel, Jun 15 2021
A229046
G.f.: Sum_{n>=0} n! * x^n * (1+x)^n / Product_{k=1..n} (1 + k*x).
Original entry on oeis.org
1, 1, 2, 4, 10, 28, 88, 304, 1144, 4648, 20248, 94024, 463144, 2409928, 13198888, 75848584, 456066664, 2862257608, 18708144808, 127096142344, 895846801384, 6540722530888, 49392459602728, 385251753351304, 3099780861286504, 25698921466247368, 219294936264513448
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 4*x^3 + 10*x^4 + 28*x^5 + 88*x^6 + 304*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x) + 2!*x^2*(1+x)^2/((1+x)*(1+2*x)) + 3!*x^3*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + 4!*x^4*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + 5!*x^5*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
Also, we have the identity (cf. A204064):
A(x) = 1 + x + 2*x^2*(1+x)/(1+x+x^2) + 2*x^3*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + 2*x^4*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + 2*x^5*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, by Peter Bala's o.g.f.:
A(x) = 1/((1+x)*(1-x)) + x/((1+x)^2*(1-2*x)) + x^2/((1+x)^3*(1-3*x))+ x^3/((1+x)^4*(1-4*x))+ x^4/((1+x)^5*(1-5*x)) + x^5/((1+x)^6*(1-6*x)) +...
-
a:= n-> add(k!*Stirling2(n-k+1,k+1), k=0..floor(n/2)):
seq(a(n), n=0..30); # Alois P. Heinz, Jan 24 2018
-
a[n_] := Sum[k!*StirlingS2[n-k+1, k+1], {k, 0, n/2}];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Jul 25 2018, after Alois P. Heinz *)
-
a(n)=polcoeff( sum(m=0, n, m!*x^m*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)
for(n=0,30,print1(a(n),", "))
-
a(n)=polcoeff( 1-x + 2*x*sum(m=0, n, x^m*prod(k=1, m, (k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)
for(n=0,30,print1(a(n), ", "))
-
/* After Peter Bala: Sum_{n>=0} x^n/((1+x)^(n+1)*(1 - (n+1)*x)) */
{a(n)=polcoeff( sum(m=0, n, x^m/((1+x)^(m+1)*(1 - (m+1)*x) +x*O(x^n))), n)} \\ Paul D. Hanna, Jul 13 2014
for(n=0,30,print1(a(n), ", "))
-
a(n)=sum(k=0, floor(n/2), sum(i=0, k, (-1)^i*binomial(k,i)*(k-i+1)^(n-k)))
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Jul 13 2014
A204064
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (k + n*x) / (1 + k*x + n*x^2).
Original entry on oeis.org
1, 1, 2, 5, 14, 44, 152, 572, 2324, 10124, 47012, 231572, 1204964, 6599444, 37924292, 228033332, 1431128804, 9354072404, 63548071172, 447923400692, 3270361265444, 24696229801364, 192625876675652, 1549890430643252, 12849460733123684, 109647468132256724
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 14*x^4 + 44*x^5 + 152*x^6 + 572*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+2*x)*(2+2*x)/((1+x+2*x^2)*(1+2*x+2*x^2)) + x^3*(1+3*x)*(2+3*x)*(3+3*x)/((1+x+3*x^2)*(1+2*x+3*x^2)*(1+3*x+3*x^2)) + x^4*(1+4*x)*(2+4*x)*(3+4*x)*(4+4*x)/((1+x+4*x^2)*(1+2*x+4*x^2)*(1+3*x+4*x^2)*(1+4*x+4*x^2)) +...
Also, we have the identity (cf. A229046):
A(x) = 1/2 + (1/2)*(1+x)/(1+x) + (2!/2)*x*(1+x)^2/((1+x)*(1+2*x)) + (3!/2)*x^2*(1+x)^3/((1+x)*(1+2*x)*(1+3*x)) + (4!/2)*x^3*(1+x)^4/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)) + (5!/2)*x^4*(1+x)^5/((1+x)*(1+2*x)*(1+3*x)*(1+4*x)*(1+5*x)) +...
-
b:= proc(n, k) option remember; `if`(n<1, 1, `if`(k>
ceil(n/2), 0, add((k-j)*b(n-1-j, k-j), j=0..1)))
end:
a:= n-> ceil(add(b(n+2, k), k=1..1+ceil(n/2))/2):
seq(a(n), n=0..25); # Alois P. Heinz, Jan 26 2018
-
b[n_, k_] := b[n, k] = If[n < 1, 1, If[k > Ceiling[n/2], 0, Sum[(k - j) b[n - 1 - j, k - j], {j, 0, 1}]]];
a[n_] := Ceiling[Sum[b[n + 2, k], {k, 1, 1 + Ceiling[n/2]}]/2];
Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Jun 05 2018, after Alois P. Heinz *)
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1,m,(k+m*x)/(1+k*x+m*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
-
{a(n)=polcoeff( 1/2 + sum(m=1, n+1, m!/2*x^(m-1)*(1+x)^m/prod(k=1, m, 1+k*x +x*O(x^n))), n)}
for(n=0,30,print1(a(n),", "))
-
{a(n)=if(n<0,0,if(n<1,1,(1/2)*sum(k=0, floor((n+1)/2), sum(i=0, k, (-1)^i*binomial(k, i)*(k-i+1)^(n-k+1)))))} \\ Paul D. Hanna, Jul 13 2014
for(n=0, 30, print1(a(n), ", "))
A234643
E.g.f.: Sum_{n>=0} Integral^n (exp(x) + 1)^n dx^n, where integral^n F(x) dx^n is the n-th integration of F(x) with no constant of integration.
Original entry on oeis.org
1, 2, 5, 13, 35, 99, 297, 951, 3265, 12047, 47761, 202975, 921281, 4447327, 22737537, 122639583, 695404929, 4132531679, 25667031937, 166211936735, 1119791799425, 7833568488415, 56802921911681, 426267651506655, 3305731721387649, 26457699508131807, 218276886237532033
Offset: 0
E.g.f.: A(x) = 1 + 2*x + 5*x^2/2! + 13*x^3/3! + 35*x^4/4! + 99*x^5/5! +...
where the e.g.f. may be expressed as a series involving iterated integration:
A(x) = 1 + Integral (exp(x)+1) dx + Integral^2 (exp(x)+1)^2 dx^2 + Integral^3 (exp(x)+1)^3 dx^3 + Integral^4 (exp(x)+1)^4 dx^4 +...
-
{a(n)=sum(k=0,n, sum(j=0,k,binomial(k,j)*j^(n-k)))}
for(n=0,30,print1(a(n),", "))
-
{INTEGRATE(n,F)=local(G=F);for(i=1,n,G=intformal(G));G}
{a(n)=local(A=1+x);A=1+sum(k=1,n,INTEGRATE(k,(exp(x+x*O(x^n))+1)^k ));n!*polcoeff(A,n)}
for(n=0,30,print1(a(n),", "))
A344392
T(n, k) = k!*Stirling2(n - k, k), for n >= 0 and 0 <= k <= floor(n/2). Triangle read by rows.
Original entry on oeis.org
1, 0, 0, 1, 0, 1, 0, 1, 2, 0, 1, 6, 0, 1, 14, 6, 0, 1, 30, 36, 0, 1, 62, 150, 24, 0, 1, 126, 540, 240, 0, 1, 254, 1806, 1560, 120, 0, 1, 510, 5796, 8400, 1800, 0, 1, 1022, 18150, 40824, 16800, 720, 0, 1, 2046, 55980, 186480, 126000, 15120
Offset: 0
Triangle starts:
[ 0] [1]
[ 1] [0]
[ 2] [0, 1]
[ 3] [0, 1]
[ 4] [0, 1, 2]
[ 5] [0, 1, 6]
[ 6] [0, 1, 14, 6]
[ 7] [0, 1, 30, 36]
[ 8] [0, 1, 62, 150, 24]
[ 9] [0, 1, 126, 540, 240]
[10] [0, 1, 254, 1806, 1560, 120]
[11] [0, 1, 510, 5796, 8400, 1800]
-
T := (n, k) -> k!*Stirling2(n - k, k):
seq(seq(T(n, k), k=0..n/2), n = 0..11);
Showing 1-5 of 5 results.
Comments