cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A372254 Number A(n,k) of acyclic orientations of the complete tripartite graph K_{n,n,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 6, 14, 1, 18, 78, 230, 1, 54, 426, 1902, 6902, 1, 162, 2286, 15402, 76110, 329462, 1, 486, 12090, 122190, 822954, 4553166, 22934774, 1, 1458, 63198, 951546, 8724078, 61796298, 381523758, 2193664790, 1, 4374, 327306, 7290942, 90768378, 823457454, 6241779786, 42700751022, 276054834902
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Square array A(n,k) begins:
       1,       1,        1,         1,           1,            1, ...
       2,       6,       18,        54,         162,          486, ...
      14,      78,      426,      2286,       12090,        63198, ...
     230,    1902,    15402,    122190,      951546,      7290942, ...
    6902,   76110,   822954,   8724078,    90768378,    928340190, ...
  329462, 4553166, 61796298, 823457454, 10779805722, 138779942046, ...
		

Crossrefs

Rows n=0-2 give: A000012, A008776, A370960.
Column k=0 gives A048163(n+1).
Main diagonal gives A370961.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [n$2, k],
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, 3))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..9);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n-j]]*Binomial[n-1, j-1], {j, 1, n}]];
    A[n_, k_] := A[n, k] = Module[{q, l, b}, {q, l} = {-1, {n, n, k}}; b[n0_, j_] := b[n0, j] = If[j == 1, Product[q-i, {i, 0, n0-1}]*(q-n0)^l[[1]], Sum[b[n0 + m, j-1]*Coefficient[g[l[[j]]], x, m], {m, 0, l[[j]]}]]; Abs[b[0, 3]]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Apr 25 2024, after Alois P. Heinz *)

A370613 Total number of acyclic orientations in all complete multipartite graphs K_lambda, where lambda ranges over all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 5, 9, 63, 509, 2959, 22453, 247949, 3080991, 28988331, 407320739, 5122243495, 82583577967, 1430027615585, 22556817627789, 395098668828675, 7979894546677853, 154786744386253387, 3355612019167352821, 78865333300205585345, 1769663675666499515751
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
All terms are odd.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    b:= proc(t, n, i) option remember; `if`(i*(i+1)/2 abs(b(0, n$2)):
    seq(a(n), n=0..22);

A370614 Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n into distinct parts; triangle T(n,k), n>=0, k = 1..A000009(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 8, 1, 16, 46, 1, 32, 146, 330, 1, 64, 454, 1066, 1374, 1, 128, 1394, 4718, 5658, 10554, 1, 256, 4246, 20266, 23118, 41506, 57054, 101502, 1, 512, 12866, 85310, 93930, 237686, 302730, 525642, 657210, 1165104, 1, 1024, 38854, 354106, 380094
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1;
  1,   4;
  1,   8;
  1,  16,   46;
  1,  32,  146,   330;
  1,  64,  454,  1066,  1374;
  1, 128, 1394,  4718,  5658, 10554;
  1, 256, 4246, 20266, 23118, 41506, 57054, 101502;
  ...
		

Crossrefs

Columns k=1-2 give: A000012, A011782 (for n>=3).
Row sums give A370613.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    h:= proc() option remember; local q, l, b; q, l, b:= -1, args,
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    b:= proc(n, i, l) `if`(i*(i+1)/2 sort(b(n$2, [0]))[]:
    seq(T(n), n=0..12);

A372395 Total number of acyclic orientations in all complete multipartite graphs K_lambda, where lambda ranges over all partitions of n.

Original entry on oeis.org

1, 1, 3, 11, 65, 411, 3535, 31081, 337185, 3846557, 50329253, 691740489, 10725769171, 172411994899, 3050277039465, 56428854605627, 1124781474310649, 23349607769846667, 518744693882444419, 11949343411110856153, 291921874093876965453, 7395266131906154621501
Offset: 0

Views

Author

Alois P. Heinz, Apr 29 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
All terms are odd.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    b:= proc(t, n, i) option remember; `if`(n=0, t!*(-1)^t,
         `if`(i<1, 0, b(t, n, i-1)+add(coeff(g(i), x, m)*
            b(t+m, n-i, min(n-i, i)), m=0..i)))
        end:
    a:= n-> abs(b(0, n$2)):
    seq(a(n), n=0..21);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    b[t_, n_, i_] := b[t, n, i] = If[n == 0, t!*(-1)^t, If[i < 1, 0, b[t, n, i - 1] + Sum[Coefficient[g[i], x, m]*b[t + m, n - i, Min[n - i, i]], {m, 0, i}]]];
    a[n_] := Abs[b[0, n, n]];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 24 2024, after Alois P. Heinz *)

A372396 Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n; triangle T(n,k), n>=0, k = 1..A000041(n), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 6, 1, 8, 14, 18, 24, 1, 16, 46, 54, 78, 96, 120, 1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720, 1, 64, 454, 486, 1066, 1374, 1536, 1902, 2286, 2616, 3000, 3216, 3720, 4320, 5040, 1, 128, 1394, 1458, 4718, 5658, 6144, 6902, 10554, 12090
Offset: 0

Views

Author

Alois P. Heinz, Apr 29 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1,  2;
  1,  4,   6;
  1,  8,  14,  18,  24;
  1, 16,  46,  54,  78,  96, 120;
  1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720;
  ...
		

Crossrefs

Columns k=1-3 give: A000012, A011782 (for n>=2), A027649(n-2) (for n>=4).
Row sums give A372395.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    h:= proc() option remember; local q, l, b; q, l, b:= -1, args,
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    b:= proc(n, i, l) `if`(n=0 or i=1, [h([l[], 1$n, 0])],
         [b(n-i, min(n-i, i), [l[], i])[], b(n, i-1, l)[]])
        end:
    T:= n-> sort(b(n$2, []))[]:
    seq(T(n), n=0..10);

Formula

T(n,A000041(n)) = A000142(n).
T(n,A000041(n)-1) = A001563(n-1) for n>=2.
Showing 1-5 of 5 results.