cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A033815 Number of standard permutations of [ a_1..a_n b_1..b_n ] (b_i is not immediately followed by a_i, for all i).

Original entry on oeis.org

1, 1, 14, 426, 24024, 2170680, 287250480, 52370755920, 12585067447680, 3854801333416320, 1465957162768492800, 677696237345719468800, 374281829360322587827200, 243388909697235614324812800, 184070135024053703140543027200, 160192129141963141211280644352000
Offset: 0

Views

Author

Keywords

Comments

Also turns up as the solution to Problem #18, p. 326 of Alan Tucker's Applied Combinatorics, 4th ed, Wiley NY 2002 [Tucker's `n' is the `2n' here]. - John L Leonard, Sep 15 2003
Number of acyclic orientations of the Turán graph T(2n,n). - Alois P. Heinz, Jan 13 2016
n-th term of the n-th forward differences of n!. - Alois P. Heinz, Feb 22 2019

References

  • R. P. Stanley, Enumerative Combinatorics I, Chap.2, Exercise 10, p. 89.

Crossrefs

Main diagonal of array in A068106 and of A047920.
Column k=2 of A372326.

Programs

  • Haskell
    a033815 n = a116854 (2 * n + 1) (n + 1)
    -- Reinhard Zumkeller, Aug 31 2014
  • Maple
    A033815 := proc(n) local i; add(binomial(n, i)*(-1)^i*(2*n - i)!, i = 0 .. n) end;
    # second Maple program:
    A:= proc(n, k) A(n, k):= `if`(k=0, n!, A(n+1, k-1) -A(n, k-1)) end:
    a:= n-> A(n$2):
    seq(a(n), n=0..23);  # Alois P. Heinz, Feb 22 2019
  • Mathematica
    a[n_] := (2n)!*Hypergeometric1F1[-n, -2n, -1]; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Jun 13 2012, after Vladimir Reshetnikov *)

Formula

a(n) = A002119(n)*n!*(-1)^n.
D-finite with recurrence a(n) = 2n*(2n-1)*a(n-1) + n*(n-1)*a(n-2).
a(n) = Sum_{i=0..n} binomial(n, i)*(-1)^i*(2*n-i)!.
From John L Leonard, Sep 15 2003: (Start)
a(n) = Sum_{i=0..n} C(n, i)*(2n-i)!*Sum_{j=0..2n-i} (-1)^j/j!.
a(n) = n!*Sum_{i=0..n} C(n, i)*n!/(n-i)!*Sum_{j=0..n-i} (-1)^j*C(n-i, j)*(n-j)!/i!. (End)
a(n) = Sum_{k=0..n} binomial(n,k)*A000166(n+k). - Vladeta Jovovic, Sep 04 2006
a(n) = A116854(2*n+1,n+1). - Reinhard Zumkeller, Aug 31 2014
a(n) = A267383(2n,n). - Alois P. Heinz, Jan 13 2016
a(n) ~ sqrt(Pi) * 2^(2*n + 1) * n^(2*n + 1/2) / exp(2*n + 1/2). - Vaclav Kotesovec, Feb 18 2017
a(n) = n!*exp(-1/2)*((-1)^n * BesselI(n+1/2,1/2)*Pi^(1/2) + BesselK(n+1/2,1/2)/Pi^(1/2) ). - Mark van Hoeij, Jul 15 2022

A370961 a(n) = number of acyclic orientations of the complete tripartite graph K_{n,n,n}.

Original entry on oeis.org

1, 6, 426, 122190, 90768378, 138779942046, 379578822373866, 1689637343582548590, 11434884125767376107098, 111765072808554847704145086, 1515592947854931941485836600906, 27609710924806869786487193747541390, 658043992934027491354757341987635993018
Offset: 0

Views

Author

N. J. A. Sloane, Apr 04 2024

Keywords

Crossrefs

Main diagonal of A372254.
Row n=3 of A372326.

Formula

a(n) = A266858(3n) = A267383(3n,3). - Alois P. Heinz, Apr 17 2024
a(n) = Sum_{k=0..3n} (-1)^k * A212220(n,k). - Alois P. Heinz, May 02 2024

Extensions

More terms from Don Knuth, Apr 07 2024
a(0)=1 prepended by Alois P. Heinz, Apr 17 2024

A370613 Total number of acyclic orientations in all complete multipartite graphs K_lambda, where lambda ranges over all partitions of n into distinct parts.

Original entry on oeis.org

1, 1, 1, 5, 9, 63, 509, 2959, 22453, 247949, 3080991, 28988331, 407320739, 5122243495, 82583577967, 1430027615585, 22556817627789, 395098668828675, 7979894546677853, 154786744386253387, 3355612019167352821, 78865333300205585345, 1769663675666499515751
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
All terms are odd.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    b:= proc(t, n, i) option remember; `if`(i*(i+1)/2 abs(b(0, n$2)):
    seq(a(n), n=0..22);

A370614 Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n into distinct parts; triangle T(n,k), n>=0, k = 1..A000009(n), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 8, 1, 16, 46, 1, 32, 146, 330, 1, 64, 454, 1066, 1374, 1, 128, 1394, 4718, 5658, 10554, 1, 256, 4246, 20266, 23118, 41506, 57054, 101502, 1, 512, 12866, 85310, 93930, 237686, 302730, 525642, 657210, 1165104, 1, 1024, 38854, 354106, 380094
Offset: 0

Views

Author

Alois P. Heinz, Apr 30 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1;
  1,   4;
  1,   8;
  1,  16,   46;
  1,  32,  146,   330;
  1,  64,  454,  1066,  1374;
  1, 128, 1394,  4718,  5658, 10554;
  1, 256, 4246, 20266, 23118, 41506, 57054, 101502;
  ...
		

Crossrefs

Columns k=1-2 give: A000012, A011782 (for n>=3).
Row sums give A370613.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    h:= proc() option remember; local q, l, b; q, l, b:= -1, args,
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    b:= proc(n, i, l) `if`(i*(i+1)/2 sort(b(n$2, [0]))[]:
    seq(T(n), n=0..12);

A372084 Number of acyclic orientations of the Turán graph T(n^2,n).

Original entry on oeis.org

1, 1, 14, 122190, 4154515368024, 1835278052687560517522520, 26375779571296696625528695444035039796080, 25932533306693349690666903275634586837883421559437937952074800, 3259525010466811026507391843042719132975543560928683870154345751824625274129141118944640
Offset: 0

Views

Author

Alois P. Heinz, Apr 17 2024

Keywords

Comments

The Turán graph T(n^2,n) is the complete n-partite graph K_{n,...,n}.
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Crossrefs

Main diagonal of A372326.
Cf. A267383.

Formula

a(n) = A267383(n^2,n).

A372395 Total number of acyclic orientations in all complete multipartite graphs K_lambda, where lambda ranges over all partitions of n.

Original entry on oeis.org

1, 1, 3, 11, 65, 411, 3535, 31081, 337185, 3846557, 50329253, 691740489, 10725769171, 172411994899, 3050277039465, 56428854605627, 1124781474310649, 23349607769846667, 518744693882444419, 11949343411110856153, 291921874093876965453, 7395266131906154621501
Offset: 0

Views

Author

Alois P. Heinz, Apr 29 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
All terms are odd.

Crossrefs

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    b:= proc(t, n, i) option remember; `if`(n=0, t!*(-1)^t,
         `if`(i<1, 0, b(t, n, i-1)+add(coeff(g(i), x, m)*
            b(t+m, n-i, min(n-i, i)), m=0..i)))
        end:
    a:= n-> abs(b(0, n$2)):
    seq(a(n), n=0..21);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    b[t_, n_, i_] := b[t, n, i] = If[n == 0, t!*(-1)^t, If[i < 1, 0, b[t, n, i - 1] + Sum[Coefficient[g[i], x, m]*b[t + m, n - i, Min[n - i, i]], {m, 0, i}]]];
    a[n_] := Abs[b[0, n, n]];
    Table[a[n], {n, 0, 21}] (* Jean-François Alcover, Jul 24 2024, after Alois P. Heinz *)

A372396 Triangle T(n,k) in which row n lists in increasing order the number of acyclic orientations of complete multipartite graphs K_lambda, where lambda is a partition of n; triangle T(n,k), n>=0, k = 1..A000041(n), read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 4, 6, 1, 8, 14, 18, 24, 1, 16, 46, 54, 78, 96, 120, 1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720, 1, 64, 454, 486, 1066, 1374, 1536, 1902, 2286, 2616, 3000, 3216, 3720, 4320, 5040, 1, 128, 1394, 1458, 4718, 5658, 6144, 6902, 10554, 12090
Offset: 0

Views

Author

Alois P. Heinz, Apr 29 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Triangle T(n,k) begins:
  1;
  1;
  1,  2;
  1,  4,   6;
  1,  8,  14,  18,  24;
  1, 16,  46,  54,  78,  96, 120;
  1, 32, 146, 162, 230, 330, 384, 426, 504, 600, 720;
  ...
		

Crossrefs

Columns k=1-3 give: A000012, A011782 (for n>=2), A027649(n-2) (for n>=4).
Row sums give A372395.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    h:= proc() option remember; local q, l, b; q, l, b:= -1, args,
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    b:= proc(n, i, l) `if`(n=0 or i=1, [h([l[], 1$n, 0])],
         [b(n-i, min(n-i, i), [l[], i])[], b(n, i-1, l)[]])
        end:
    T:= n-> sort(b(n$2, []))[]:
    seq(T(n), n=0..10);

Formula

T(n,A000041(n)) = A000142(n).
T(n,A000041(n)-1) = A001563(n-1) for n>=2.
Showing 1-7 of 7 results.