cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A267383 Number A(n,k) of acyclic orientations of the Turán graph T(n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 6, 14, 1, 1, 1, 2, 6, 18, 46, 1, 1, 1, 2, 6, 24, 78, 230, 1, 1, 1, 2, 6, 24, 96, 426, 1066, 1, 1, 1, 2, 6, 24, 120, 504, 2286, 6902, 1, 1, 1, 2, 6, 24, 120, 600, 3216, 15402, 41506, 1
Offset: 0

Views

Author

Alois P. Heinz, Jan 13 2016

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.
Conjecture: In general, column k > 1 is asymptotic to n! / ((k-1) * (1 - log(k/(k-1)))^((k-1)/2) * k^n * (log(k/(k-1)))^(n+1)). - Vaclav Kotesovec, Feb 18 2017

Examples

			Square array A(n,k) begins:
  1,    1,    1,    1,    1,    1,    1, ...
  1,    1,    1,    1,    1,    1,    1, ...
  1,    2,    2,    2,    2,    2,    2, ...
  1,    4,    6,    6,    6,    6,    6, ...
  1,   14,   18,   24,   24,   24,   24, ...
  1,   46,   78,   96,  120,  120,  120, ...
  1,  230,  426,  504,  600,  720,  720, ...
  1, 1066, 2286, 3216, 3720, 4320, 5040, ...
		

Crossrefs

Main diagonal gives A000142.
A(2n,n) gives A033815.
A(n,ceiling(n/2)) gives A161132.
Bisection of column k=2 gives A048163.
Trisection of column k=3 gives A370961.
a(n^2,n) gives A372084.

Programs

  • Maple
    A:= proc(n, k) option remember; local b, l, q; q:=-1;
           l:= [floor(n/k)$(k-irem(n,k)), ceil(n/k)$irem(n,k)];
           b:= proc(n, j) option remember; `if`(j=1, (q-n)^l[1]*
                 mul(q-i, i=0..n-1), add(b(n+m, j-1)*
                 Stirling2(l[j], m), m=0..l[j]))
               end; forget(b);
           abs(b(0, k))
        end:
    seq(seq(A(n, 1+d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{ b, l, q}, q = -1; l = Join[Array[Floor[n/k] &, k - Mod[n, k]], Array[ Ceiling[n/k] &, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j == 1, (q - nn)^l[[1]]*Product[q - i, {i, 0, nn - 1}], Sum[b[nn + m, j - 1]*StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]]; Table[Table[A[n, 1 + d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A372254 Number A(n,k) of acyclic orientations of the complete tripartite graph K_{n,n,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 2, 1, 6, 14, 1, 18, 78, 230, 1, 54, 426, 1902, 6902, 1, 162, 2286, 15402, 76110, 329462, 1, 486, 12090, 122190, 822954, 4553166, 22934774, 1, 1458, 63198, 951546, 8724078, 61796298, 381523758, 2193664790, 1, 4374, 327306, 7290942, 90768378, 823457454, 6241779786, 42700751022, 276054834902
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Square array A(n,k) begins:
       1,       1,        1,         1,           1,            1, ...
       2,       6,       18,        54,         162,          486, ...
      14,      78,      426,      2286,       12090,        63198, ...
     230,    1902,    15402,    122190,      951546,      7290942, ...
    6902,   76110,   822954,   8724078,    90768378,    928340190, ...
  329462, 4553166, 61796298, 823457454, 10779805722, 138779942046, ...
		

Crossrefs

Rows n=0-2 give: A000012, A008776, A370960.
Column k=0 gives A048163(n+1).
Main diagonal gives A370961.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [n$2, k],
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, 3))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..9);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n-j]]*Binomial[n-1, j-1], {j, 1, n}]];
    A[n_, k_] := A[n, k] = Module[{q, l, b}, {q, l} = {-1, {n, n, k}}; b[n0_, j_] := b[n0, j] = If[j == 1, Product[q-i, {i, 0, n0-1}]*(q-n0)^l[[1]], Sum[b[n0 + m, j-1]*Coefficient[g[l[[j]]], x, m], {m, 0, l[[j]]}]]; Abs[b[0, 3]]];
    Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Apr 25 2024, after Alois P. Heinz *)

A372326 Number A(n,k) of acyclic orientations of the Turán graph T(k*n,n); square array A(n,k), n>=0, k>=1, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 6, 1, 1, 1, 230, 426, 24, 1, 1, 1, 6902, 122190, 24024, 120, 1, 1, 1, 329462, 90768378, 165392664, 2170680, 720, 1, 1, 1, 22934774, 138779942046, 4154515368024, 457907248920, 287250480, 5040, 1
Offset: 0

Views

Author

Alois P. Heinz, Apr 27 2024

Keywords

Comments

The Turán graph T(k*n,n) is the complete n-partite graph K_{k,...,k}.
An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Square array A(n,k) begins:
  1,   1,       1,            1,                  1, ...
  1,   1,       1,            1,                  1, ...
  1,   2,      14,          230,               6902, ...
  1,   6,     426,       122190,           90768378, ...
  1,  24,   24024,    165392664,      4154515368024, ...
  1, 120, 2170680, 457907248920, 495810323060597880, ...
		

Crossrefs

Columns k=0-2 give: A000012, A000142, A033815.
Rows n=0+1,2-3 give: A000012, A048163(k+1), A370961.
Main diagonal gives A372084.
Cf. A267383.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [k$n, 0],
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    A[n_, k_] := A[n, k] = Module[{q = -1, l, b}, l = Append[Table[k, {n}], 0];
       b[nn_, j_] := b[nn, j] = If[j == 1, Product[q - i, {i, 0, nn - 1}]*
       (q - nn)^l[[1]], Sum[b[nn + m, j - 1]*Coefficient[g[l[[j]]], x, m],
       {m, 0, l[[j]]}]];
       Abs[b[0, Length[l]]]];
    Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jun 09 2024, after Alois P. Heinz *)

Formula

A(n,k) = A267383(k*n,n).

A212220 Triangle T(n,k), n>=0, 0<=k<=3n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete tripartite graph K_(n,n,n), highest powers first.

Original entry on oeis.org

1, 1, -3, 2, 0, 1, -12, 58, -137, 154, -64, 0, 1, -27, 324, -2223, 9414, -24879, 39528, -33966, 11828, 0, 1, -48, 1064, -14244, 126936, -784788, 3409590, -10329081, 21197804, -27779384, 20648794, -6476644, 0, 1, -75, 2650, -58100, 878200, -9632440, 78681510
Offset: 0

Views

Author

Alois P. Heinz, May 06 2012

Keywords

Comments

The complete tripartite graph K_(n,n,n) has 3*n vertices and 3*n^2 = A033428(n) edges. The chromatic polynomial of K_(n,n,n) has 3*n+1 = A016777(n) coefficients.

Examples

			2 example graphs:             +-------------+
.                             | +-------+   |
.                             +-o---o---o   |
.                                \ / \ / \ /
.                                 X   X   X
.                                / \ / \ / \
.              o---o---o      +-o---o---o   |
.              +-------+      | +-------+   |
.                             +-------------+
Graph:         K_(1,1,1)        K_(2,2,2)
Vertices:          3                6
Edges:             3               12
The complete tripartite graph K_(1,1,1) is the cycle graph C_3 with chromatic polynomial q*(q-1)*(q-2) = q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
  1;
  1,   -3,    2,       0;
  1,  -12,   58,    -137,     154,       -64,         0;
  1,  -27,  324,   -2223,    9414,    -24879,     39528, ...
  1,  -48, 1064,  -14244,  126936,   -784788,   3409590, ...
  1,  -75, 2650,  -58100,  878200,  -9632440,  78681510, ...
  1, -108, 5562, -180585, 4123350, -70008186, 912054348, ...
  ...
		

Crossrefs

Columns k=0-1 give: A000012, (-1)*A033428.
Row sums and last elements of rows give: A000007.
Row lengths give: A016777.

Programs

  • Maple
    P:= proc(n) option remember;
           expand(add(add(Stirling2(n, k) *Stirling2(n, m)
           *mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=0..n), k=0..n))
        end:
    T:= n-> seq(coeff(P(n), q, 3*n-k), k=0..3*n):
    seq(T(n), n=0..6);
  • Mathematica
    P[n_] := P[n] = Expand[Sum[Sum[StirlingS2[n, k] *StirlingS2[n, m]*Product[q - i, {i, 0, k + m - 1}]*(q - k - m)^n, {m, 1, n}], {k, 1, n}]];
    T[n_] := Table[Coefficient[P[n], q, 3*n - k], {k, 0, 3*n}];
    Array[T, 6] // Flatten (* Jean-François Alcover, May 29 2018, from Maple *)

Formula

T(n,k) = [q^(3*n-k)] Sum_{k,m=0..n} S2(n,k) * S2(n,m) * (q-k-m)^n * Product_{i=0..k+m-1} (q-i) with S2 = A008277.
Sum_{k=0..3n} (-1)^k * T(n,k) = A370961(n). - Alois P. Heinz, May 02 2024

Extensions

T(0,0)=1 prepended by Alois P. Heinz, May 02 2024

A372261 Number T(n,k,j) of acyclic orientations of the complete tripartite graph K_{n,k,j}; triangle of triangles T(n,k,j), n>=0, k=0..n, j=0..k, read by rows.

Original entry on oeis.org

1, 1, 2, 6, 1, 4, 18, 14, 78, 426, 1, 8, 54, 46, 330, 2286, 230, 1902, 15402, 122190, 1, 16, 162, 146, 1374, 12090, 1066, 10554, 101502, 951546, 6902, 76110, 822954, 8724078, 90768378, 1, 32, 486, 454, 5658, 63198, 4718, 57054, 657210, 7290942, 41506, 525642, 6495534, 78463434, 928340190
Offset: 0

Views

Author

Alois P. Heinz, Apr 24 2024

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Examples

			Triangle of triangles T(n,k,j) begins:
    1;
  ;
    1;
    2,    6;
  ;
    1;
    4,   18;
   14,   78,   426;
  ;
    1;
    8,   54;
   46,  330,  2286;
  230, 1902, 15402, 122190;
  ;
  ...
		

Crossrefs

T(n,n,n) gives A370961.
T(n,n,0) gives A048163(n+1).
T(n+1,n,0) gives A188634(n+1).
T(n,1,1) gives A008776.
T(n,2,2) gives A370960.

Programs

  • Maple
    g:= proc(n) option remember; `if`(n=0, 1, add(
          expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
        end:
    T:= proc() option remember; local q, l, b; q, l, b:= -1, [args],
          proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
            (q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
          end; abs(b(0, nops(l)))
        end:
    seq(seq(seq(T(n, k, j), j=0..k), k=0..n), n=0..5);
  • Mathematica
    g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
    T[n_, k_, j_] := T[n, k, j] = Module[{q = -1, l = {n, k, j}, b},
       b[n0_, j0_] := b[n0, j0] = If[j0 == 1, Product[q - i, {i, 0, n0 - 1}]*
       (q - n0)^n, Sum[b[n0 + m, j0 - 1]*Coefficient[g[l[[j0]]], x, m],
       {m, 0, l[[j0]]}]];
    Abs[b[0, 3]]];
    Table[Table[Table[T[n, k, j], {j, 0, k}], {k, 0, n}], {n, 0, 5}] // Flatten (* Jean-François Alcover, Jun 14 2024, after Alois P. Heinz *)

A266858 Number of acyclic orientations of the Turán graph T(n,3).

Original entry on oeis.org

1, 1, 2, 6, 18, 78, 426, 2286, 15402, 122190, 951546, 8724078, 90768378, 928340190, 10779805722, 138779942046, 1759271695338, 24739709631678, 379578822373866, 5743346972756526, 94864142045862282, 1689637343582548590, 29717468115957434586, 563879701735681033998
Offset: 0

Views

Author

Alois P. Heinz, Jan 04 2016

Keywords

Comments

An acyclic orientation is an assignment of a direction to each edge such that no cycle in the graph is consistently oriented. Stanley showed that the number of acyclic orientations of a graph G is equal to the absolute value of the chromatic polynomial X_G(q) evaluated at q=-1.

Crossrefs

Column k=3 of A267383.
Trisection gives A370961.

Programs

  • Mathematica
    A[n_, k_] := A[n, k] = Module[{b, l, q}, q = -1; l = Join[Array[Floor[ n/k]&, k - Mod[n, k]], Array[Ceiling[n/k]&, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j==1, (q-nn)^l[[1]] Product[q-i, {i, 0, nn-1}], Sum[b[nn + m, j-1] StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]];
    a[n_] := A[n, 3];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 20 2018, after Alois P. Heinz *)

Formula

a(n) ~ n! / (2*(1 - log(3/2)) * 3^n * (log(3/2))^(n+1)). - Vaclav Kotesovec, Feb 18 2017

A370960 a(n) = number of acyclic orientations of the complete tripartite graph K_{2,2,n}.

Original entry on oeis.org

14, 78, 426, 2286, 12090, 63198, 327306, 1682766, 8601690, 43768638, 221910186, 1121897646, 5659111290, 28494757278, 143272715466, 719565670926, 3610655860890, 18104646725118, 90728875495146, 454467461514606, 2275631193410490, 11391336159448158, 57009415513961226, 285258058278100686, 1427134339747920090
Offset: 0

Views

Author

N. J. A. Sloane, Apr 04 2024

Keywords

Crossrefs

Cf. A370961.
Row n=2 of A372254.

Extensions

Further terms from Don Knuth, Apr 07 2024
a(0)=14 prepended by Alois P. Heinz, Apr 17 2024
Showing 1-7 of 7 results.