A267383
Number A(n,k) of acyclic orientations of the Turán graph T(n,k); square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 4, 1, 1, 1, 2, 6, 14, 1, 1, 1, 2, 6, 18, 46, 1, 1, 1, 2, 6, 24, 78, 230, 1, 1, 1, 2, 6, 24, 96, 426, 1066, 1, 1, 1, 2, 6, 24, 120, 504, 2286, 6902, 1, 1, 1, 2, 6, 24, 120, 600, 3216, 15402, 41506, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, ...
1, 2, 2, 2, 2, 2, 2, ...
1, 4, 6, 6, 6, 6, 6, ...
1, 14, 18, 24, 24, 24, 24, ...
1, 46, 78, 96, 120, 120, 120, ...
1, 230, 426, 504, 600, 720, 720, ...
1, 1066, 2286, 3216, 3720, 4320, 5040, ...
Bisection of column k=2 gives
A048163.
Trisection of column k=3 gives
A370961.
-
A:= proc(n, k) option remember; local b, l, q; q:=-1;
l:= [floor(n/k)$(k-irem(n,k)), ceil(n/k)$irem(n,k)];
b:= proc(n, j) option remember; `if`(j=1, (q-n)^l[1]*
mul(q-i, i=0..n-1), add(b(n+m, j-1)*
Stirling2(l[j], m), m=0..l[j]))
end; forget(b);
abs(b(0, k))
end:
seq(seq(A(n, 1+d-n), n=0..d), d=0..14);
-
A[n_, k_] := A[n, k] = Module[{ b, l, q}, q = -1; l = Join[Array[Floor[n/k] &, k - Mod[n, k]], Array[ Ceiling[n/k] &, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j == 1, (q - nn)^l[[1]]*Product[q - i, {i, 0, nn - 1}], Sum[b[nn + m, j - 1]*StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]]; Table[Table[A[n, 1 + d - n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)
A372254
Number A(n,k) of acyclic orientations of the complete tripartite graph K_{n,n,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 6, 14, 1, 18, 78, 230, 1, 54, 426, 1902, 6902, 1, 162, 2286, 15402, 76110, 329462, 1, 486, 12090, 122190, 822954, 4553166, 22934774, 1, 1458, 63198, 951546, 8724078, 61796298, 381523758, 2193664790, 1, 4374, 327306, 7290942, 90768378, 823457454, 6241779786, 42700751022, 276054834902
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
2, 6, 18, 54, 162, 486, ...
14, 78, 426, 2286, 12090, 63198, ...
230, 1902, 15402, 122190, 951546, 7290942, ...
6902, 76110, 822954, 8724078, 90768378, 928340190, ...
329462, 4553166, 61796298, 823457454, 10779805722, 138779942046, ...
- Alois P. Heinz, Rows n = 0..140, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [n$2, k],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, 3))
end:
seq(seq(A(n, d-n), n=0..d), d=0..9);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n-j]]*Binomial[n-1, j-1], {j, 1, n}]];
A[n_, k_] := A[n, k] = Module[{q, l, b}, {q, l} = {-1, {n, n, k}}; b[n0_, j_] := b[n0, j] = If[j == 1, Product[q-i, {i, 0, n0-1}]*(q-n0)^l[[1]], Sum[b[n0 + m, j-1]*Coefficient[g[l[[j]]], x, m], {m, 0, l[[j]]}]]; Abs[b[0, 3]]];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Apr 25 2024, after Alois P. Heinz *)
A372326
Number A(n,k) of acyclic orientations of the Turán graph T(k*n,n); square array A(n,k), n>=0, k>=1, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 6, 1, 1, 1, 230, 426, 24, 1, 1, 1, 6902, 122190, 24024, 120, 1, 1, 1, 329462, 90768378, 165392664, 2170680, 720, 1, 1, 1, 22934774, 138779942046, 4154515368024, 457907248920, 287250480, 5040, 1
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, ...
1, 2, 14, 230, 6902, ...
1, 6, 426, 122190, 90768378, ...
1, 24, 24024, 165392664, 4154515368024, ...
1, 120, 2170680, 457907248920, 495810323060597880, ...
- Alois P. Heinz, Antidiagonals n = 0..42, flattened
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
- Wikipedia, Turán graph
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [k$n, 0],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..10);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
A[n_, k_] := A[n, k] = Module[{q = -1, l, b}, l = Append[Table[k, {n}], 0];
b[nn_, j_] := b[nn, j] = If[j == 1, Product[q - i, {i, 0, nn - 1}]*
(q - nn)^l[[1]], Sum[b[nn + m, j - 1]*Coefficient[g[l[[j]]], x, m],
{m, 0, l[[j]]}]];
Abs[b[0, Length[l]]]];
Table[Table[A[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Jun 09 2024, after Alois P. Heinz *)
A212220
Triangle T(n,k), n>=0, 0<=k<=3n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete tripartite graph K_(n,n,n), highest powers first.
Original entry on oeis.org
1, 1, -3, 2, 0, 1, -12, 58, -137, 154, -64, 0, 1, -27, 324, -2223, 9414, -24879, 39528, -33966, 11828, 0, 1, -48, 1064, -14244, 126936, -784788, 3409590, -10329081, 21197804, -27779384, 20648794, -6476644, 0, 1, -75, 2650, -58100, 878200, -9632440, 78681510
Offset: 0
2 example graphs: +-------------+
. | +-------+ |
. +-o---o---o |
. \ / \ / \ /
. X X X
. / \ / \ / \
. o---o---o +-o---o---o |
. +-------+ | +-------+ |
. +-------------+
Graph: K_(1,1,1) K_(2,2,2)
Vertices: 3 6
Edges: 3 12
The complete tripartite graph K_(1,1,1) is the cycle graph C_3 with chromatic polynomial q*(q-1)*(q-2) = q^3 -3*q^2 +2*q => [1, -3, 2, 0].
Triangle T(n,k) begins:
1;
1, -3, 2, 0;
1, -12, 58, -137, 154, -64, 0;
1, -27, 324, -2223, 9414, -24879, 39528, ...
1, -48, 1064, -14244, 126936, -784788, 3409590, ...
1, -75, 2650, -58100, 878200, -9632440, 78681510, ...
1, -108, 5562, -180585, 4123350, -70008186, 912054348, ...
...
- Alois P. Heinz, Rows n = 0..58, flattened
- Anatol N. Kirillov, On some quadratic algebras. I 1/2: Combinatorics of Dunkl and Gaudin elements, Schubert, Grothendieck, Fuss-Catalan, universal Tutte and reduced polynomials, SIGMA, Symmetry Integrability Geom. Methods Appl. 12, Paper 002, 172 p. (2016).
- Eric Weisstein's World of Mathematics, Complete Tripartite Graph
- Wikipedia, Acyclic orientation
- Wikipedia, Chromatic Polynomial
- Wikipedia, Multipartite graph
Row sums and last elements of rows give:
A000007.
-
P:= proc(n) option remember;
expand(add(add(Stirling2(n, k) *Stirling2(n, m)
*mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=0..n), k=0..n))
end:
T:= n-> seq(coeff(P(n), q, 3*n-k), k=0..3*n):
seq(T(n), n=0..6);
-
P[n_] := P[n] = Expand[Sum[Sum[StirlingS2[n, k] *StirlingS2[n, m]*Product[q - i, {i, 0, k + m - 1}]*(q - k - m)^n, {m, 1, n}], {k, 1, n}]];
T[n_] := Table[Coefficient[P[n], q, 3*n - k], {k, 0, 3*n}];
Array[T, 6] // Flatten (* Jean-François Alcover, May 29 2018, from Maple *)
A372261
Number T(n,k,j) of acyclic orientations of the complete tripartite graph K_{n,k,j}; triangle of triangles T(n,k,j), n>=0, k=0..n, j=0..k, read by rows.
Original entry on oeis.org
1, 1, 2, 6, 1, 4, 18, 14, 78, 426, 1, 8, 54, 46, 330, 2286, 230, 1902, 15402, 122190, 1, 16, 162, 146, 1374, 12090, 1066, 10554, 101502, 951546, 6902, 76110, 822954, 8724078, 90768378, 1, 32, 486, 454, 5658, 63198, 4718, 57054, 657210, 7290942, 41506, 525642, 6495534, 78463434, 928340190
Offset: 0
Triangle of triangles T(n,k,j) begins:
1;
;
1;
2, 6;
;
1;
4, 18;
14, 78, 426;
;
1;
8, 54;
46, 330, 2286;
230, 1902, 15402, 122190;
;
...
- Alois P. Heinz, Rows n = 0..40, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
T(n,k,0) for k=0..9 give:
A000012,
A000079,
A027649,
A027650,
A027651,
A283811,
A283812,
A283813,
A284032,
A284033.
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
T:= proc() option remember; local q, l, b; q, l, b:= -1, [args],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
seq(seq(seq(T(n, k, j), j=0..k), k=0..n), n=0..5);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_, k_, j_] := T[n, k, j] = Module[{q = -1, l = {n, k, j}, b},
b[n0_, j0_] := b[n0, j0] = If[j0 == 1, Product[q - i, {i, 0, n0 - 1}]*
(q - n0)^n, Sum[b[n0 + m, j0 - 1]*Coefficient[g[l[[j0]]], x, m],
{m, 0, l[[j0]]}]];
Abs[b[0, 3]]];
Table[Table[Table[T[n, k, j], {j, 0, k}], {k, 0, n}], {n, 0, 5}] // Flatten (* Jean-François Alcover, Jun 14 2024, after Alois P. Heinz *)
A266858
Number of acyclic orientations of the Turán graph T(n,3).
Original entry on oeis.org
1, 1, 2, 6, 18, 78, 426, 2286, 15402, 122190, 951546, 8724078, 90768378, 928340190, 10779805722, 138779942046, 1759271695338, 24739709631678, 379578822373866, 5743346972756526, 94864142045862282, 1689637343582548590, 29717468115957434586, 563879701735681033998
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..465
- P. J. Cameron, C. A. Glass, R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Turán graph
-
A[n_, k_] := A[n, k] = Module[{b, l, q}, q = -1; l = Join[Array[Floor[ n/k]&, k - Mod[n, k]], Array[Ceiling[n/k]&, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j==1, (q-nn)^l[[1]] Product[q-i, {i, 0, nn-1}], Sum[b[nn + m, j-1] StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]];
a[n_] := A[n, 3];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 20 2018, after Alois P. Heinz *)
A370960
a(n) = number of acyclic orientations of the complete tripartite graph K_{2,2,n}.
Original entry on oeis.org
14, 78, 426, 2286, 12090, 63198, 327306, 1682766, 8601690, 43768638, 221910186, 1121897646, 5659111290, 28494757278, 143272715466, 719565670926, 3610655860890, 18104646725118, 90728875495146, 454467461514606, 2275631193410490, 11391336159448158, 57009415513961226, 285258058278100686, 1427134339747920090
Offset: 0
Showing 1-7 of 7 results.
Comments