A370961
a(n) = number of acyclic orientations of the complete tripartite graph K_{n,n,n}.
Original entry on oeis.org
1, 6, 426, 122190, 90768378, 138779942046, 379578822373866, 1689637343582548590, 11434884125767376107098, 111765072808554847704145086, 1515592947854931941485836600906, 27609710924806869786487193747541390, 658043992934027491354757341987635993018
Offset: 0
A372254
Number A(n,k) of acyclic orientations of the complete tripartite graph K_{n,n,k}; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 2, 1, 6, 14, 1, 18, 78, 230, 1, 54, 426, 1902, 6902, 1, 162, 2286, 15402, 76110, 329462, 1, 486, 12090, 122190, 822954, 4553166, 22934774, 1, 1458, 63198, 951546, 8724078, 61796298, 381523758, 2193664790, 1, 4374, 327306, 7290942, 90768378, 823457454, 6241779786, 42700751022, 276054834902
Offset: 0
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, ...
2, 6, 18, 54, 162, 486, ...
14, 78, 426, 2286, 12090, 63198, ...
230, 1902, 15402, 122190, 951546, 7290942, ...
6902, 76110, 822954, 8724078, 90768378, 928340190, ...
329462, 4553166, 61796298, 823457454, 10779805722, 138779942046, ...
- Alois P. Heinz, Rows n = 0..140, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
A:= proc(n, k) option remember; local q, l, b; q, l, b:= -1, [n$2, k],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, 3))
end:
seq(seq(A(n, d-n), n=0..d), d=0..9);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n-j]]*Binomial[n-1, j-1], {j, 1, n}]];
A[n_, k_] := A[n, k] = Module[{q, l, b}, {q, l} = {-1, {n, n, k}}; b[n0_, j_] := b[n0, j] = If[j == 1, Product[q-i, {i, 0, n0-1}]*(q-n0)^l[[1]], Sum[b[n0 + m, j-1]*Coefficient[g[l[[j]]], x, m], {m, 0, l[[j]]}]]; Abs[b[0, 3]]];
Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 9}] // Flatten (* Jean-François Alcover, Apr 25 2024, after Alois P. Heinz *)
A372261
Number T(n,k,j) of acyclic orientations of the complete tripartite graph K_{n,k,j}; triangle of triangles T(n,k,j), n>=0, k=0..n, j=0..k, read by rows.
Original entry on oeis.org
1, 1, 2, 6, 1, 4, 18, 14, 78, 426, 1, 8, 54, 46, 330, 2286, 230, 1902, 15402, 122190, 1, 16, 162, 146, 1374, 12090, 1066, 10554, 101502, 951546, 6902, 76110, 822954, 8724078, 90768378, 1, 32, 486, 454, 5658, 63198, 4718, 57054, 657210, 7290942, 41506, 525642, 6495534, 78463434, 928340190
Offset: 0
Triangle of triangles T(n,k,j) begins:
1;
;
1;
2, 6;
;
1;
4, 18;
14, 78, 426;
;
1;
8, 54;
46, 330, 2286;
230, 1902, 15402, 122190;
;
...
- Alois P. Heinz, Rows n = 0..40, flattened
- Don Knuth, Parades and poly-Bernoulli bijections, Mar 31 2024. See (19.2).
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Acyclic orientation
- Wikipedia, Multipartite graph
T(n,k,0) for k=0..9 give:
A000012,
A000079,
A027649,
A027650,
A027651,
A283811,
A283812,
A283813,
A284032,
A284033.
-
g:= proc(n) option remember; `if`(n=0, 1, add(
expand(x*g(n-j))*binomial(n-1, j-1), j=1..n))
end:
T:= proc() option remember; local q, l, b; q, l, b:= -1, [args],
proc(n, j) option remember; `if`(j=1, mul(q-i, i=0..n-1)*
(q-n)^l[1], add(b(n+m, j-1)*coeff(g(l[j]), x, m), m=0..l[j]))
end; abs(b(0, nops(l)))
end:
seq(seq(seq(T(n, k, j), j=0..k), k=0..n), n=0..5);
-
g[n_] := g[n] = If[n == 0, 1, Sum[Expand[x*g[n - j]]*Binomial[n - 1, j - 1], {j, 1, n}]];
T[n_, k_, j_] := T[n, k, j] = Module[{q = -1, l = {n, k, j}, b},
b[n0_, j0_] := b[n0, j0] = If[j0 == 1, Product[q - i, {i, 0, n0 - 1}]*
(q - n0)^n, Sum[b[n0 + m, j0 - 1]*Coefficient[g[l[[j0]]], x, m],
{m, 0, l[[j0]]}]];
Abs[b[0, 3]]];
Table[Table[Table[T[n, k, j], {j, 0, k}], {k, 0, n}], {n, 0, 5}] // Flatten (* Jean-François Alcover, Jun 14 2024, after Alois P. Heinz *)
A266858
Number of acyclic orientations of the Turán graph T(n,3).
Original entry on oeis.org
1, 1, 2, 6, 18, 78, 426, 2286, 15402, 122190, 951546, 8724078, 90768378, 928340190, 10779805722, 138779942046, 1759271695338, 24739709631678, 379578822373866, 5743346972756526, 94864142045862282, 1689637343582548590, 29717468115957434586, 563879701735681033998
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..465
- P. J. Cameron, C. A. Glass, R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8
- Wikipedia, Turán graph
-
A[n_, k_] := A[n, k] = Module[{b, l, q}, q = -1; l = Join[Array[Floor[ n/k]&, k - Mod[n, k]], Array[Ceiling[n/k]&, Mod[n, k]]]; b[nn_, j_] := b[nn, j] = If[j==1, (q-nn)^l[[1]] Product[q-i, {i, 0, nn-1}], Sum[b[nn + m, j-1] StirlingS2[l[[j]], m], {m, 0, l[[j]]}]]; Abs[b[0, k]]];
a[n_] := A[n, 3];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Aug 20 2018, after Alois P. Heinz *)
A212221
Square array A(n,k), n>=1, k>=1, read by antidiagonals: A(n,k) is 1/(2*n) times the number of n-colorings of the complete tripartite graph K_(k,k,k).
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 0, 0, 1, 3, 0, 0, 1, 12, 6, 0, 0, 1, 30, 78, 10, 0, 0, 1, 66, 474, 340, 15, 0, 0, 1, 138, 2238, 4780, 1095, 21, 0, 0, 1, 282, 9546, 46420, 32955, 2856, 28, 0, 0, 1, 570, 38958, 385660, 617775, 168546, 6412, 36
Offset: 1
Square array A(n,k) begins:
0, 0, 0, 0, 0, 0, 0, ...
0, 0, 0, 0, 0, 0, 0, ...
1, 1, 1, 1, 1, 1, 1, ...
3, 12, 30, 66, 138, 282, 570, ...
6, 78, 474, 2238, 9546, 38958, 155994, ...
10, 340, 4780, 46420, 385660, 2995540, 22666780, ...
15, 1095, 32955, 617775, 9248595, 123920295, 1569542955, ...
-
P:= proc(n) option remember;
unapply(expand(add(add(Stirling2(n, k) *Stirling2(n, m)
*mul(q-i, i=0..k+m-1) *(q-k-m)^n, m=1..n), k=1..n)), q)
end:
A:= (n, k)-> P(k)(n)/(2*n):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12);
-
p[n_] := p[n] = Function[q, Expand[Sum[Sum[StirlingS2[n, k] * StirlingS2[n, m] * Product[q-i, {i, 0, k+m-1}]*(q-k-m)^n, {m, 1, n}], {k, 1, n}]]]; a[n_, k_] := p[k][n]/(2*n); Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Dec 13 2013, translated from Maple *)
Showing 1-5 of 5 results.
Comments