A266695
Number of acyclic orientations of the Turán graph T(n,2).
Original entry on oeis.org
1, 1, 2, 4, 14, 46, 230, 1066, 6902, 41506, 329462, 2441314, 22934774, 202229266, 2193664790, 22447207906, 276054834902, 3216941445106, 44222780245622, 578333776748674, 8787513806478134, 127464417117501586, 2121181056663291350, 33800841048945424546
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..475
- Beáta Bényi and Peter Hajnal, Combinatorics of poly-Bernoulli numbers, arXiv:1510.05765 [math.CO], 2015; Studia Scientiarum Mathematicarum Hungarica, Vol. 52, No. 4 (2015), 537-558, DOI:10.1556/012.2015.52.4.1325.
- P. J. Cameron, C. A. Glass, and R. U. Schumacher, Acyclic orientations and poly-Bernoulli numbers, arXiv:1412.3685 [math.CO], 2014-2018.
- Richard P. Stanley, Acyclic Orientations of Graphs, Discrete Mathematics, 5 (1973), pages 171-178, doi:10.1016/0012-365X(73)90108-8.
- Eric Weisstein's World of Mathematics, Complete Bipartite Graph
- Wikipedia, Turán graph
-
a:= n-> (p-> add(Stirling2(n-p+1, i+1)*Stirling2(p+1, i+1)*
i!^2, i=0..p))(iquo(n, 2)):
seq(a(n), n=0..25);
-
a[n_] := With[{q=Quotient[n, 2]}, Sum[StirlingS2[n-q+1, i+1] StirlingS2[ q+1, i+1] i!^2, {i, 0, q}]];
Array[a, 24, 0] (* Jean-François Alcover, Nov 06 2018 *)
A212084
Triangle T(n,k), n>=0, 0<=k<=2n, read by rows: row n gives the coefficients of the chromatic polynomial of the complete bipartite graph K_(n,n), highest powers first.
Original entry on oeis.org
1, 1, -1, 0, 1, -4, 6, -3, 0, 1, -9, 36, -75, 78, -31, 0, 1, -16, 120, -524, 1400, -2236, 1930, -675, 0, 1, -25, 300, -2200, 10650, -34730, 75170, -102545, 78610, -25231, 0, 1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, 5552680, -6796926, 4787174
Offset: 0
3 example graphs: +-----------+
. o o o o o o |
. | |\ /| |\ /|\ /|\ /
. | | X | | X | X | X
. | |/ \| |/ \|/ \|/ \
. o o o o o o |
. +-----------+
Graph: K_(1,1) K_(2,2) K_(3,3)
Vertices: 2 4 6
Edges: 1 4 9
The complete bipartite graph K_(2,2) is the cycle graph C_4 with chromatic polynomial q^4 -4*q^3 +6*q^2 -3*q => row 2 = [1, -4, 6, -3, 0].
Triangle T(n,k) begins:
1;
1, -1, 0;
1, -4, 6, -3, 0;
1, -9, 36, -75, 78, -31, 0;
1, -16, 120, -524, 1400, -2236, 1930, -675, ...
1, -25, 300, -2200, 10650, -34730, 75170, -102545, ...
1, -36, 630, -6915, 52080, -279142, 1074822, -2942445, ...
...
Row sums and last elements of rows give:
A000007.
Sums of absolute values of row elements give:
A048163(n+1).
-
P:= n-> add(Stirling2(n, k) *mul(q-i, i=0..k-1) *(q-k)^n, k=0..n):
T:= n-> seq(coeff(P(n), q, 2*n-k), k=0..2*n):
seq(T(n), n=1..8);
A061776
Start with a single triangle; at n-th generation add a triangle at each vertex, allowing triangles to overlap; sequence gives number of triangles in n-th generation.
Original entry on oeis.org
1, 3, 6, 12, 18, 30, 42, 66, 90, 138, 186, 282, 378, 570, 762, 1146, 1530, 2298, 3066, 4602, 6138, 9210, 12282, 18426, 24570, 36858, 49146, 73722, 98298, 147450, 196602, 294906, 393210, 589818, 786426, 1179642, 1572858, 2359290, 3145722, 4718586, 6291450
Offset: 0
- R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- R. Reed, The Lemming Simulation Problem, Mathematics in School, 3 (#6, Nov. 1974), front cover and pp. 5-6. [Scanned photocopy of pages 5, 6 only, with annotations by R. K. Guy and N. J. A. Sloane]
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2).
A061777 gives total population of triangles at n-th generation.
-
A061776 := proc(n) if n mod 2 = 0 then 6*(2^(n/2)-1); else 3*(2^((n-1)/2)-1)+3*(2^((n+1)/2)-1); fi; end; # for n >= 1
-
a[0]=1; a[n_/;EvenQ[n]]:=6*(2^(n/2)-1); a[n_/;OddQ[n]] := 3*(2^((n-1)/2)-1) + 3*(2^((n+1)/2)-1); a /@ Range[0, 37] (* Jean-François Alcover, Apr 22 2011, after Maple program *)
CoefficientList[Series[(1 + 2 x) (1 + x^2) / ((1 - x) (1 - 2 x^2)), {x, 0, 40}], x] (* Vincenzo Librandi, Jun 19 2013 *)
LinearRecurrence[{1,2,-2},{1,3,6,12},40] (* Harvey P. Dale, Mar 27 2019 *)
-
a(n)=([0,1,0; 0,0,1; -2,2,1]^n*[1;3;6])[1,1] \\ Charles R Greathouse IV, Feb 19 2017
Showing 1-3 of 3 results.
Comments