A161154 Positive integers n such that both {the number of (non-leading) 0's in the binary representation of n} is coprime to n and {the number of 1's in the binary representation of n} is coprime to n.
1, 2, 5, 8, 9, 11, 13, 14, 17, 19, 23, 25, 27, 29, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 52, 53, 56, 57, 59, 61, 62, 67, 71, 73, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 107, 109, 113, 117, 119, 121, 125, 128, 131, 133, 134, 135, 137, 139, 141
Offset: 1
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..1000
Programs
-
Mathematica
bcpQ[n_]:=Module[{ones=DigitCount[n,2,1],zeros=DigitCount[n,2,0]}, And@@ CoprimeQ[ {ones,zeros},n]]; Select[Range[150],bcpQ] (* Harvey P. Dale, Feb 19 2012 *)
-
PARI
b0(n) = if(n<1, 0, b0(n\2) + 1 - n%2); b1(n) = if(n<1, 0, b1(n\2) + n%2); for (n=1, 141, if(gcd(b0(n),n)==1 && gcd(b1(n),n)==1, print1(n", "))) \\ Indranil Ghosh, Mar 08 2017
-
Python
from math import gcd i=j=1 while j<=100: if gcd(bin(i)[2:].count("0"),i)==1==gcd(bin(i)[2:].count("1"),i): print(j, i) j+=1 i+=1 # Indranil Ghosh, Mar 08 2017
Extensions
Extended by Ray Chandler, Jun 11 2009
Comments