A161161 Irregular triangle of differences T(n,k) = A083906(n,k) - A083906(n-1,k) of q-Binomial coefficients.
1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 3, 5, 2, 2, 1, 1, 2, 3, 5, 7, 5, 4, 3, 1, 1, 1, 2, 3, 5, 7, 11, 8, 9, 7, 6, 2, 2, 1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11, 7, 4, 3, 1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 32, 37, 42, 44
Offset: 1
Examples
The differences between 5 3 4 3 1 and 4 2 2 yield row four : 1 1 2 3 1. Triangle begins: 1; 1, 1; 1, 1, 2; 1, 1, 2, 3, 1; 1, 1, 2, 3, 5, 2, 2; 1, 1, 2, 3, 5, 7, 5, 4, 3, 1; 1, 1, 2, 3, 5, 7, 11, 8, 9, 7, 6, 2, 2; 1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11, 7, 4, 3, 1; 1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2; ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..2390 (rows 1..30, flattened)
- William Q. Erickson and Jan Kretschmann, The structure and normalized volume of Monge polytopes, arXiv:2311.07522 [math.CO], 2023. See p. 16.
- M. Isachenkov, I. Kirsch, and V. Schomerus, Chiral Primaries in Strange Metals, arXiv preprint arXiv:1403.6857 [hep-th], 2014. See Eq. (4.6).
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 100); qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >; A083906:= func< n,k | Coefficient(R!( (&+[qBinom(n,k,x): k in [0..n]]) ), k) >; A161161:= func< n,k | A083906(n,k) - A083906(n-1,k) >; [A161161(n,k): k in [0..Floor(n^2/4)], n in [1..12]]; // G. C. Greubel, Feb 13 2024 -
Maple
A161161 := proc(n,m) A083906(n,m)-A083906(n-1,m) ; end proc: for n from 0 to 10 do for k from 0 to A033638(n)-1 do printf("%d, ", A161161(n, k)) ; od: od: # R. J. Mathar, Jul 13 2012
-
Mathematica
b[n_, k_] := b[n, k] = SeriesCoefficient[Sum[QBinomial[n, m, q], {m, 0, n}], {q, 0, k}]; T[n_, k_] := b[n, k] - b[n - 1, k]; Table[Table[T[n, k], {k, 0, n^2/4}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
-
SageMath
def t(n, k): # t = A083906 if k<0 or k> (n^2//4): return 0 elif n<2 : return n+1 else: return 2*t(n-1, k) - t(n-2, k) + t(n-2, k-n+1) def A161161(n,k): return t(n, k) - t(n-1, k) flatten([[A161161(n, k) for k in range(int(n^2//4)+1)] for n in range(1,13)]) # G. C. Greubel, Feb 13 2024
Formula
Sum_{k=0..floor(n^2/4)} T(n, k) = A000079(n-1) (row sums).
Sum_{k=0..(n+2 - ceiling(sqrt(4*n)))} T(n-k, k) = A002865(n+1) (antidiagonal sums).
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A077957(n-1). - G. C. Greubel, Feb 13 2024