cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161161 Irregular triangle of differences T(n,k) = A083906(n,k) - A083906(n-1,k) of q-Binomial coefficients.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 3, 5, 2, 2, 1, 1, 2, 3, 5, 7, 5, 4, 3, 1, 1, 1, 2, 3, 5, 7, 11, 8, 9, 7, 6, 2, 2, 1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11, 7, 4, 3, 1, 1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2, 1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 32, 37, 42, 44
Offset: 1

Views

Author

Alford Arnold, Jun 04 2009

Keywords

Examples

			The differences between 5 3 4 3 1 and 4 2 2 yield row four : 1 1 2 3 1.
Triangle begins:
  1;
  1, 1;
  1, 1, 2;
  1, 1, 2, 3, 1;
  1, 1, 2, 3, 5, 2,  2;
  1, 1, 2, 3, 5, 7,  5,  4,  3,  1;
  1, 1, 2, 3, 5, 7, 11,  8,  9,  7,  6,  2,  2;
  1, 1, 2, 3, 5, 7, 11, 15, 14, 15, 15, 13, 11,  7,  4,  3,  1;
  1, 1, 2, 3, 5, 7, 11, 15, 22, 21, 25, 25, 27, 23, 22, 15, 13, 8, 6, 2, 2;
  ...
		

Crossrefs

Cf. A000079 (row sums), A002865 (antidiagonal sums), A077957 (alternating row sums).

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 100);
    qBinom:= func< n,k,x | n eq 0 or k eq 0 select 1 else (&*[(1-x^(n-j))/(1-x^(j+1)): j in [0..k-1]]) >;
    A083906:= func< n,k | Coefficient(R!( (&+[qBinom(n,k,x): k in [0..n]]) ), k) >;
    A161161:= func< n,k | A083906(n,k) - A083906(n-1,k) >;
    [A161161(n,k): k in [0..Floor(n^2/4)], n in [1..12]]; // G. C. Greubel, Feb 13 2024
    
  • Maple
    A161161 := proc(n,m)
         A083906(n,m)-A083906(n-1,m) ;
    end proc:
    for n from 0 to 10 do
         for k from 0 to A033638(n)-1 do
             printf("%d, ", A161161(n, k)) ;
         od:
    od: # R. J. Mathar, Jul 13 2012
  • Mathematica
    b[n_, k_] := b[n, k] = SeriesCoefficient[Sum[QBinomial[n, m, q], {m, 0, n}], {q, 0, k}];
    T[n_, k_] := b[n, k] - b[n - 1, k];
    Table[Table[T[n, k], {k, 0, n^2/4}], {n, 1, 10}] // Flatten (* Jean-François Alcover, Nov 25 2017 *)
  • SageMath
    def t(n, k): # t = A083906
        if k<0 or k> (n^2//4): return 0
        elif n<2 : return n+1
        else: return 2*t(n-1, k) - t(n-2, k) + t(n-2, k-n+1)
    def A161161(n,k): return t(n, k) - t(n-1, k)
    flatten([[A161161(n, k) for k in range(int(n^2//4)+1)] for n in range(1,13)]) # G. C. Greubel, Feb 13 2024

Formula

Sum_{k=0..floor(n^2/4)} T(n, k) = A000079(n-1) (row sums).
Sum_{k=0..(n+2 - ceiling(sqrt(4*n)))} T(n-k, k) = A002865(n+1) (antidiagonal sums).
Sum_{k=0..floor(n^2/4)} (-1)^k*T(n, k) = A077957(n-1). - G. C. Greubel, Feb 13 2024