A161170 Least integer k such that the n-almost prime count is equal to the prime count.
10, 125, 1809, 37820, 2722768, 1037849736, 4204496515890, 476649763963226416
Offset: 2
Examples
a(2) = 10 since there are now 4 primes ({2, 3, 5, 7}) and 4 semiprimes ({4, 6, 9, 10}) <= 10. a(3) = 125 with 30 primes and 30 products of 3 primes. a(4) = 1809 with 279 primes and 279 products of 4 primes. a(5) = 37820 with 4000 primes and 4000 products of 5 primes. a(6) = 2722768 with 198183 primes and 198183 products of 6 primes. a(7) = 1037849736 with 52672391 primes and 52672391 products of 7 primes. a(8) = 4204496515890 with 150007470826 primes and 150007470826 products of 8 primes. a(9) = 476649763963226416 with 12012658440940682 primes and 12012658440940682 products of 9 primes.
Crossrefs
Cf. A125149.
Programs
-
Perl
use ntheory ":all"; my($k,@S)=(0,map{0}1..20); forfactored { $S[@]++; while ($S[1] == $S[$k]) { print "$k $\n" if $k>1; $k++; } } 3e6; # Dana Jacobsen, Jan 18 2019
-
Ruby
# A slow program to generate sequence # Faster C code is available by request # Tallies number of primes, semiprimes, trieneprimes ... tally = Hash.new { |h,k| h[k] = 0} # Returns number of factors of num def factors(num) (2..(Math.sqrt(num).to_i)).each{ |i| return factors(num/i) + 1 if num % i == 0 } 1 end # Testing number of primes against composites with num_factors num_factors = 2 2.upto( 1.0/0.0 ) { |i| tally[factors(i)] +=1 if tally[1] == tally[num_factors] puts "k: #{i} Primes: #{tally[1]} Composites with #{num_factors} factors: #{tally[num_factors]}" num_factors += 1 end }
Extensions
Edited example and a(8) from Donovan Johnson, Mar 10 2010
a(9) from Henri Lifchitz, Mar 17 2025
Comments