A161344 Numbers k with A033676(k)=2, where A033676 is the largest divisor <= sqrt(k).
4, 6, 8, 10, 14, 22, 26, 34, 38, 46, 58, 62, 74, 82, 86, 94, 106, 118, 122, 134, 142, 146, 158, 166, 178, 194, 202, 206, 214, 218, 226, 254, 262, 274, 278, 298, 302, 314, 326, 334, 346, 358, 362, 382, 386, 394, 398, 422, 446, 454, 458, 466, 478, 482, 502, 514
Offset: 1
Links
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos
- Omar E. Pol, Illustration: Divisors and pi(x)
- Omar E. Pol, Illustration of initial terms
- Omar E. Pol. Illustration of initial terms of A008578, A161344, A161345, A161424
Crossrefs
Programs
-
Maple
isA := proc(n,s) if n mod s <> 0 then RETURN(false); fi; if n/s-s >= 0 then RETURN(true); else RETURN(false); fi; end: isA161344 := proc(n) for s from 3 to n do if isA(n,s) then RETURN(false); fi; od: isA(n,2) ; end: for n from 1 to 3000 do if isA161344(n) then printf("%d,",n) ; fi; od; # R. J. Mathar, Jun 24 2009
-
Mathematica
a[n_] := If[n <= 3, 2n+2, 2*Prime[n-1]]; Table[a[n], {n, 1, 56}] (* Jean-François Alcover, Nov 26 2012, after Zak Seidov *)
-
PARI
a(n)=if(n>3,prime(n-1),n+1)*2 \\ M. F. Hasler, Nov 27 2012
Formula
Equals 2*A000040 union {8}. - M. F. Hasler, Nov 27 2012
Extensions
More terms from R. J. Mathar, Jun 24 2009
Definition added by R. J. Mathar, Jun 28 2009
Comments