A161381 Triangle read by rows: T(n,k) = n!*2^k/(n-k)! (n >= 0, 0 <= k <= n).
1, 1, 2, 1, 4, 8, 1, 6, 24, 48, 1, 8, 48, 192, 384, 1, 10, 80, 480, 1920, 3840, 1, 12, 120, 960, 5760, 23040, 46080, 1, 14, 168, 1680, 13440, 80640, 322560, 645120, 1, 16, 224, 2688, 26880, 215040, 1290240, 5160960, 10321920, 1, 18, 288, 4032, 48384, 483840, 3870720, 23224320, 92897280, 185794560
Offset: 0
Examples
Triangle begins: 1 1 2 1 4 8 1 6 24 48 1 8 48 192 384 1 10 80 480 1920 3840 For n=2 and k=2, T(2,2)=8 since there are exactly 8 functions f from {1,2} to {1,2,3,4} that are injective-plus. Letting f = <f(1),f(2)>, the 8 functions are <1,2>, <1,3>, <2,1>, <2,4>, <3,1>, <3,4>, <4,2>,and <4,3>. - _Dennis P. Walsh_, Nov 20 2012
Links
- Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding Squares and Overlaps Over the Natural Numbers, arXiv:0901.1397 [math.CO], 2009.
- Mathieu Guay-Paquet and Jeffrey Shallit, Avoiding Squares and Overlaps Over the Natural Numbers, Discrete Math., 309 (2009), 6245-6254.
- Dennis Walsh, Notes on injective-plus functions
Programs
-
Magma
/* As triangle */ [[Factorial(n)*2^k/Factorial((n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 23 2015
-
Maple
seq(seq(2^k*n!/(n-k)!,k=0..n),n=0..20); # Dennis P. Walsh, Nov 20 2012
-
Mathematica
Flatten@Table[Pochhammer[n - k + 1, k] 2^k, {n, 0, 20}, {k, 0, n}] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)
Formula
From Dennis P. Walsh, Nov 20 2012: (Start)
E.g.f. for column k: exp(x)*(2*x)^k.
G.f. for column k: (2*x)^k*k!/(1 - x)^(k+1).
T(n,k) = 2^(k-n)*Sum_{j = 0..n} (binomial(n,j)T(j,i)T(n-j,k-i). (End)
From Peter Bala, Feb 20 2016: (Start)
T(n, k) = 2*n*T(n-1, k-1) = 2*k*T(n-1, k-1) + T(n-1, k) = n*T(n-1, k)/(n - k) = 2*(n - k + 1)*T(n, k-1).
G.f. Sum_{n >= 1} (2*n*x*t)^(n-1)/(1 - (2*n*t - 1)*x)^n = 1 + (1 + 2*t)*x + (1 + 4*t + 8*t^2)*x^2 + ....
E.g.f. exp(x)/(1 - 2*x*t) = 1 + (1 + 2*t)*x + (1 + 4*t + 8*t^2)*x^2/2! + ....
E.g.f. for row n: (1 + 2*x)^n.
Row reversed triangle is the exponential Riordan array [1/(1 - 2*x), x]. (End)
Extensions
More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010
Comments