cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161381 Triangle read by rows: T(n,k) = n!*2^k/(n-k)! (n >= 0, 0 <= k <= n).

Original entry on oeis.org

1, 1, 2, 1, 4, 8, 1, 6, 24, 48, 1, 8, 48, 192, 384, 1, 10, 80, 480, 1920, 3840, 1, 12, 120, 960, 5760, 23040, 46080, 1, 14, 168, 1680, 13440, 80640, 322560, 645120, 1, 16, 224, 2688, 26880, 215040, 1290240, 5160960, 10321920, 1, 18, 288, 4032, 48384, 483840, 3870720, 23224320, 92897280, 185794560
Offset: 0

Views

Author

N. J. A. Sloane, Nov 28 2009

Keywords

Comments

From Dennis P. Walsh, Nov 20 2012: (Start)
T(n,k) is the number of functions f:[k]->[2n] such that, if f(x)=f(y) or f(x)=2n+1-f(y), then x=y.
We call such functions injective-plus.
Equivalently, T(n,k) gives the number of ways to select k couples from n couples, then choose one person from each of the k selected couples, and then arrange those k individuals in a line. For example, T(50,10) is the number of ways to select 10 U.S. senators, one from each of ten different states, and arrange the senators in a reception line for a visiting dignitary. (End)

Examples

			Triangle begins:
  1
  1  2
  1  4  8
  1  6 24  48
  1  8 48 192  384
  1 10 80 480 1920 3840
For n=2 and k=2, T(2,2)=8 since there are exactly 8 functions f from {1,2} to {1,2,3,4} that are injective-plus. Letting f = <f(1),f(2)>, the 8 functions are <1,2>, <1,3>, <2,1>, <2,4>, <3,1>, <3,4>, <4,2>,and <4,3>. - _Dennis P. Walsh_, Nov 20 2012
		

Crossrefs

A010844 (row sums). Cf. A008279.

Programs

  • Magma
    /* As triangle */ [[Factorial(n)*2^k/Factorial((n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Dec 23 2015
  • Maple
    seq(seq(2^k*n!/(n-k)!,k=0..n),n=0..20); # Dennis P. Walsh, Nov 20 2012
  • Mathematica
    Flatten@Table[Pochhammer[n - k + 1, k] 2^k, {n, 0, 20}, {k, 0, n}] (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010 *)

Formula

From Dennis P. Walsh, Nov 20 2012: (Start)
E.g.f. for column k: exp(x)*(2*x)^k.
G.f. for column k: (2*x)^k*k!/(1 - x)^(k+1).
T(n,k) = 2^(k-n)*Sum_{j = 0..n} (binomial(n,j)T(j,i)T(n-j,k-i). (End)
From Peter Bala, Feb 20 2016: (Start)
T(n, k) = 2*n*T(n-1, k-1) = 2*k*T(n-1, k-1) + T(n-1, k) = n*T(n-1, k)/(n - k) = 2*(n - k + 1)*T(n, k-1).
G.f. Sum_{n >= 1} (2*n*x*t)^(n-1)/(1 - (2*n*t - 1)*x)^n = 1 + (1 + 2*t)*x + (1 + 4*t + 8*t^2)*x^2 + ....
E.g.f. exp(x)/(1 - 2*x*t) = 1 + (1 + 2*t)*x + (1 + 4*t + 8*t^2)*x^2/2! + ....
E.g.f. for row n: (1 + 2*x)^n.
Row reversed triangle is the exponential Riordan array [1/(1 - 2*x), x]. (End)

Extensions

More terms from J. Mulder (jasper.mulder(AT)planet.nl), Jan 28 2010