cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161387 Primes p such that (p-1)/2 is an (odd) binary palindrome.

Original entry on oeis.org

3, 7, 11, 19, 31, 43, 67, 103, 127, 131, 199, 239, 307, 331, 379, 439, 463, 547, 683, 887, 911, 991, 1123, 1171, 1291, 1531, 1543, 1783, 1951, 2731, 2843, 3067, 3079, 3511, 3823, 4099, 5107, 5323, 5419, 5659, 5851, 6151, 6343, 6679, 6871, 6967, 7159, 8191
Offset: 1

Views

Author

Leroy Quet, Jun 08 2009

Keywords

Examples

			67 in binary is 1000011. All binary digits but the rightmost 1 form a palindrome (100001), so therefore (67-1)/2 = 33 is a palindrome. Since 67 is a prime, it is in this sequence.
		

Crossrefs

Cf. A161388.
Terms include A000668. - Robert G. Wilson v, Jun 09 2009

Programs

  • Magma
    [ p: p in PrimesInInterval(3, 8200) | s eq Reverse(s) where s is Intseq((p-1) div 2, 2) ]; // Klaus Brockhaus, Jun 09 2009
    
  • Mathematica
    Select[Prime@Range[2,1500],(id=IntegerDigits[(#-1)/2,2])==Reverse[id]&] (* Ray Chandler, Jun 09 2009 *)
    fQ[n_] := Block[{id = IntegerDigits[(n - 1)/2, 2]}, id == Reverse@id]; Select[ Prime@ Range[2, 1100], fQ@# &] (* Robert G. Wilson v, Jun 09 2009 *)
  • PARI
    forprime(p=3,100000,t=binary((p-1)/2);if(t==vector(#t,x,t[ #t+1-x]),print1(p,","))) \\ Hagen von Eitzen, Jun 10 2009

Formula

a(n) = 2*A161388(n) + 1.

Extensions