A161435 Number of reduced words of length n in the Weyl group A_3 (or D_3).
1, 3, 5, 6, 5, 3, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 0
References
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche I.)
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
Links
Crossrefs
Growth series for groups D_n, n = 3,...,50: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162248, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379, A162380, A162381, A162384, A162388, A162389, A162392, A162399, A162402, A162403, A162411, A162412, A162413, A162418, A162452, A162456, A162461, A162469, A162492; also A162206.
Programs
-
Maple
# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021 f := proc(m::integer) (1-x^m)/(1-x) ; end proc: g := proc(k,M) local a,i; global f; a:=f(k)*mul(f(2*i),i=1..k-1); seriestolist(series(a,x,M+1)); end proc;
-
Mathematica
CoefficientList[Series[(1 - x^2) (1 - x^3) (1 - x^4) / (1 - x)^3, {x, 0, 20}], x] (* Vincenzo Librandi, Aug 23 2016 *)
Formula
G.f. for A_m is the polynomial Product_{k=1..m} (1-x^(k+1))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A008302.
Comments