cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161478 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+113)^2 = y^2.

Original entry on oeis.org

0, 52, 175, 339, 615, 1312, 2260, 3864, 7923, 13447, 22795, 46452, 78648, 133132, 271015, 458667, 776223, 1579864, 2673580, 4524432, 9208395, 15583039, 26370595, 53670732, 90824880, 153699364, 312816223, 529366467, 895825815, 1823226832, 3085374148
Offset: 1

Views

Author

Klaus Brockhaus, Jun 13 2009

Keywords

Comments

Corresponding values y of solutions (x, y) are in A161479.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (129+44*sqrt(2))/113 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (16131+6970*sqrt(2))/113^2 for n mod 3 = 0.

Crossrefs

Cf. A161479, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A161480 (decimal expansion of (129+44*sqrt(2))/113), A161481 (decimal expansion of (16131+6970*sqrt(2))/113^2).

Programs

  • Mathematica
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,52,175,339,615,1312,2260},72] (* Vladimir Joseph Stephan Orlovsky, Feb 07 2012 *)
  • PARI
    {forstep(n=0, 100000000, [3, 1], if(issquare(2*n^2+226*n+12769), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+226 for n > 6; a(1)=0, a(2)=52, a(3)=175, a(4)=339, a(5)=615, a(6)=1312.
G.f.: x*(52+123*x+164*x^2-36*x^3-41*x^4-36*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 113*A001652(k) for k >= 0.