A161487 Positive numbers y such that y^2 is of the form x^2+(x+191)^2 with integer x.
149, 191, 269, 625, 955, 1465, 3601, 5539, 8521, 20981, 32279, 49661, 122285, 188135, 289445, 712729, 1096531, 1687009, 4154089, 6391051, 9832609, 24211805, 37249775, 57308645, 141116741, 217107599, 334019261, 822488641, 1265395819
Offset: 1
Keywords
Examples
(-51, a(1)) = (-51, 149) is a solution: (-51)^2+(-51+191)^2 = 2601+19600 = 22201 = 149^2. (A161486(1), a(2)) = (0, 191) is a solution: 0^2+(0+191)^2 = 36481 = 191^2. (A161486(3), a(4)) = (336, 625) is a solution: 336^2+(336+191)^2 = 112896+277729 = 390625 = 625^2.
Crossrefs
Programs
-
PARI
{forstep(n=-52, 100000000, [1, 3], if(issquare(2*n^2+382*n+36481, &k), print1(k, ",")))}
Formula
a(n) = 6*a(n-3)-a(n-6) for n > 6; a(1)=149, a(2)=191, a(3)=269, a(4)=625, a(5)=955, a(6)=1465.
G.f.: (1-x)*(149+340*x+609*x^2+340*x^3+149*x^4) / (1-6*x^3+x^6).
a(3*k-1) = 191*A001653(k) for k >= 1.
Comments