cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A161486 Nonnegative values x of solutions (x, y) to the Diophantine equation x^2+(x+191)^2 = y^2.

Original entry on oeis.org

0, 69, 336, 573, 936, 2449, 3820, 5929, 14740, 22729, 35020, 86373, 132936, 204573, 503880, 775269, 1192800, 2937289, 4519060, 6952609, 17120236, 26339473, 40523236, 99784509, 153518160, 236187189, 581587200, 894769869, 1376600280
Offset: 1

Views

Author

Klaus Brockhaus, Jun 13 2009

Keywords

Comments

Corresponding values y of solutions (x, y) are in A161487.
lim_{n -> infinity} a(n)/a(n-3) = 3+2*sqrt(2).
lim_{n -> infinity} a(n)/a(n-1) = (209+60*sqrt(2))/191 for n mod 3 = {1, 2}.
lim_{n -> infinity} a(n)/a(n-1) = (52323+26522*sqrt(2))/191^2 for n mod 3 = 0.

Crossrefs

Cf. A161487, A001652, A156035 (decimal expansion of 3+2*sqrt(2)), A161488 (decimal expansion of (209+60*sqrt(2))/191), A161489 (decimal expansion of (52323+26522*sqrt(2))/191^2).

Programs

  • Mathematica
    Transpose[NestList[Flatten[{Rest[#],6#[[4]]-First[#]+382}]&,{0,69, 336, 573, 936,2449},40]][[1]]  (* Harvey P. Dale, Apr 01 2011 *)
    LinearRecurrence[{1,0,6,-6,0,-1,1},{0,69,336,573,936,2449,3820},40] (* Harvey P. Dale, Mar 29 2016 *)
  • PARI
    {forstep(n=0, 10000000, [1, 3], if(issquare(2*n^2+382*n+36481), print1(n, ",")))}

Formula

a(n) = 6*a(n-3)-a(n-6)+382 for n > 6; a(1)=0, a(2)=69, a(3)=336, a(4)=573, a(5)=936, a(6)=2449.
G.f.: x*(69+267*x+237*x^2-51*x^3-89*x^4-51*x^5) / ((1-x)*(1-6*x^3+x^6)).
a(3*k+1) = 191*A001652(k) for k >= 0.

A161488 Decimal expansion of (209+60*sqrt(2))/191.

Original entry on oeis.org

1, 5, 3, 8, 4, 9, 6, 4, 0, 7, 0, 2, 8, 1, 9, 7, 3, 9, 7, 5, 2, 9, 3, 2, 6, 3, 0, 0, 7, 9, 8, 8, 5, 8, 0, 3, 5, 1, 5, 2, 7, 7, 6, 5, 0, 5, 3, 5, 4, 0, 1, 5, 1, 0, 1, 5, 2, 1, 4, 7, 0, 0, 7, 4, 7, 6, 1, 4, 8, 6, 6, 4, 2, 4, 4, 8, 8, 2, 9, 4, 3, 6, 2, 8, 8, 0, 7, 9, 8, 5, 3, 7, 1, 5, 4, 8, 9, 4, 9, 9, 2, 8, 8, 4, 8
Offset: 1

Views

Author

Klaus Brockhaus, Jun 13 2009

Keywords

Comments

lim_{n -> infinity} b(n)/b(n-1) = (209+60*sqrt(2))/191 for n mod 3 = {1, 2}, b = A161486.
lim_{n -> infinity} b(n)/b(n-1) = (209+60*sqrt(2))/191 for n mod 3 = {0, 2}, b = A161487.

Examples

			(209+60*sqrt(2))/191 = 1.53849640702819739752...
		

Crossrefs

Cf. A161486, A161487, A002193 (decimal expansion of sqrt(2)), A161489 (decimal expansion of (52323+26522*sqrt(2))/191^2).

Programs

  • Magma
    (209 + 60*Sqrt(2))/191; // G. C. Greubel, Apr 06 2018
  • Mathematica
    RealDigits[(209+60*Sqrt[2])/191, 10, 100][[1]] (* G. C. Greubel, Apr 06 2018 *)
  • PARI
    (209+60*sqrt(2))/191 \\ G. C. Greubel, Apr 06 2018
    

Formula

Equals (20+3*sqrt(2))/(20-3*sqrt(2)).

A161489 Decimal expansion of (52323 + 26522*sqrt(2))/191^2.

Original entry on oeis.org

2, 4, 6, 2, 3, 9, 8, 8, 4, 0, 5, 2, 6, 8, 2, 8, 4, 0, 0, 6, 5, 5, 6, 3, 9, 6, 0, 2, 6, 2, 8, 4, 8, 0, 9, 1, 9, 9, 2, 6, 1, 2, 1, 4, 7, 3, 6, 0, 9, 4, 7, 9, 3, 6, 7, 2, 5, 3, 9, 6, 5, 0, 7, 8, 0, 1, 2, 9, 4, 3, 9, 1, 0, 3, 5, 8, 0, 4, 9, 4, 7, 4, 6, 4, 1, 3, 1, 9, 5, 4, 1, 2, 8, 0, 0, 5, 5, 6, 3, 9, 7, 0, 4, 9, 9
Offset: 1

Views

Author

Klaus Brockhaus, Jun 13 2009

Keywords

Comments

Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 0, b = A161486.
Equals lim_{n -> infinity} b(n)/b(n-1) for n mod 3 = 1, b = A161487.

Examples

			(52323 + 26522*sqrt(2))/191^2 = 2.46239884052682840065...
		

Crossrefs

Cf. A161486, A161487, A002193 (decimal expansion of sqrt(2)), A161488 (decimal expansion of (209+60*sqrt(2))/191).

Programs

  • Magma
    (52323 + 26522*Sqrt(2))/191^2; // G. C. Greubel, Apr 06 2018
  • Mathematica
    RealDigits[(52323+26522*Sqrt[2])/191^2, 10, 100][[1]] (* G. C. Greubel, Apr 06 2018 *)
  • PARI
    (52323 + 26522*sqrt(2))/191^2 \\ G. C. Greubel, Apr 06 2018
    

Formula

Equals (298 + 89*sqrt(2))/(298 - 89*sqrt(2)).
Equals (3 + 2*sqrt(2))*(20 - 3*sqrt(2))^2/(20 + 3*sqrt(2))^2.
Showing 1-3 of 3 results.