A161511 Number of 1...0 pairs in the binary representation of 2n.
0, 1, 2, 2, 3, 3, 4, 3, 4, 4, 5, 4, 6, 5, 6, 4, 5, 5, 6, 5, 7, 6, 7, 5, 8, 7, 8, 6, 9, 7, 8, 5, 6, 6, 7, 6, 8, 7, 8, 6, 9, 8, 9, 7, 10, 8, 9, 6, 10, 9, 10, 8, 11, 9, 10, 7, 12, 10, 11, 8, 12, 9, 10, 6, 7, 7, 8, 7, 9, 8, 9, 7, 10, 9, 10, 8, 11, 9, 10, 7, 11, 10, 11, 9, 12, 10, 11, 8, 13, 11, 12, 9, 13
Offset: 0
Examples
For n = 5, the binary representation of 2n is 1010; the 1...0 pairs are 10xx, 1xx0, and xx10, so a(5) = 3.
Links
- Antti Karttunen, Table of n, a(n) for n = 0..8192
- Peter J. Taylor, Recursion for A161511, answer to question on MathOverflow (2025).
Crossrefs
Programs
-
Mathematica
a[0] = 0; a[n_] := If[EvenQ[n], a[n/2] + DigitCount[n/2, 2, 1], a[(n-1)/2] + 1]; Array[a, 93, 0] (* Jean-François Alcover, Sep 09 2017 *)
-
PARI
a(n)=local(t,k);t=0;k=1;while(n>0,if(n%2==0,k++,t+=k);n\=2);t
-
Python
def A161511(n): a, b = 0, 0 for i, j in enumerate(bin(n)[:1:-1], 1): if int(j): a += i-b b += 1 return a # Chai Wah Wu, Jul 26 2023
-
Scheme
;; Two variants, the recursive one requiring memoizing definec-macro from Antti Karttunen's IntSeq-library. (define (A161511 n) (let loop ((n n) (i 1) (s 0)) (cond ((zero? n) s) ((even? n) (loop (/ n 2) (+ i 1) s)) (else (loop (/ (- n 1) 2) i (+ s i)))))) (definec (A161511 n) (cond ((zero? n) n) ((even? n) (+ (A000120 n) (A161511 (/ n 2)))) (else (+ 1 (A161511 (/ (- n 1) 2)))))) ;; Antti Karttunen, Jun 28 2014
Formula
a(0) = 0; a(2n) = a(n) + A000120(n); a(2n+1) = a(n) + 1.
From Antti Karttunen, Jun 28 2014: (Start)
Can be also obtained by mapping with an appropriate permutation from the lists of partition sizes computed for other enumerations similar to A125106:
Comments