A126441 Tabular arrangement of the natural numbers: the row on which any nonzero term a(n) appears in is A053645(a(n))=A053645(n+1), and the column is A161511(a(n)). Table is presented by columns with 2^{k-1} items in column k, unused positions are filled with 0's.
1, 2, 3, 4, 5, 0, 7, 8, 9, 6, 11, 0, 0, 0, 15, 16, 17, 10, 19, 0, 13, 0, 23, 0, 0, 0, 0, 0, 0, 0, 31, 32, 33, 18, 35, 12, 21, 14, 39, 0, 0, 0, 27, 0, 0, 0, 47, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 63, 64, 65, 34, 67, 20, 37, 22, 71, 0, 25, 0, 43, 0, 29, 0, 79, 0, 0, 0, 0, 0, 0, 0, 55, 0, 0
Offset: 0
Examples
The largest power of 2 <= 6 is 4, 6 - 4 = 2, so 6 is in row 2. By A125106, 6 corresponds to the partition [2^2], total 4, so 6 goes in column 4. Thus T(2,4) = 6. The table begins: 1.2.4..8.16.32.64.128.256.512.1024 ..3.5..9.17.33.65.129.257.513.1025 .......6.10.18.34..66.130.258..514 ....7.11.19.35.67.131.259.515.1027 ............12.20..36..68.132..260 .........13.21.37..69.133.261..517 ............14.22..38..70.134..262 ......15.23.39.71.135.263.519.1031 ...................24..40..72..136 ...............25..41..73.137..265 ...................26..42..74..138 ............27.43..75.139.267..523 .......................28..44...76 ...............29..45..77.141..269 ...................30..46..78..142 .........31.47.79.143.271.527.1039 ...........................48...80 .......................49..81..145 ...........................50...82 ...................51..83.147..275
Links
- A. Karttunen, Table of n, a(n) for n = 0..65534 (first 16 columns)
Crossrefs
Programs
-
Mathematica
columns = 7; row[n_] := n-2^Floor[Log2[n]]; col[0] = 0; col[n_] := If[EvenQ[n], col[n/2] + DigitCount[n/2, 2, 1], col[(n-1)/2]+1]; Clear[T]; T[, ] = 0; Do[T[row[k], col[k]] = k, {k, 1, 2^columns}]; Table[T[n-1, k], {k, 1, columns}, {n, 1, 2^(k-1)}] // Flatten (* Jean-François Alcover, Sep 09 2017 *)
Extensions
Edited by Franklin T. Adams-Watters, Jan 23 2007
Further edited and Scheme-code added by Antti Karttunen, Oct 12 2009
Comments