A161585 The list of the k values in the common solutions to the 2 equations 7*k+1=A^2, 11*k+1=B^2.
0, 9, 720, 56880, 4492809, 354875040, 28030635360, 2214065318409, 174883129518960, 13813553166679440, 1091095817038156809, 86182755992847708480, 6807346627617930813120, 537694200825823686528009, 42471034518612453304899600, 3354674032769557987400540400
Offset: 1
Links
- Index entries for linear recurrences with constant coefficients, signature (80,-80,1)
Programs
-
Maple
t:=0: for n from 0 to 1000000 do a:=sqrt(7*n+1): b:=sqrt(11*n+1): if (trunc(a)=a) and (trunc(b)=b) then t:=t+1: print(t,n,a,b): end if: end do:
-
Mathematica
LinearRecurrence[{80,-80,1},{0,9,720},20] (* Harvey P. Dale, Jun 07 2023 *)
Formula
k(t+3)=80*(k(t+2)-k(t+1))+k(t).
k(t)=((9+w)*((79+9*w)/2)^(t-1)+(9-w)*((79-9*w)/2)^(t-1))/154 where w=sqrt(77).
k(t) = floor of ((9+w)*((79+9*w)/2)^(t-1))/154.
G.f.: -9*x^2/((x-1)*(x^2-79*x+1)).
Extensions
Edited, extended by R. J. Mathar, Sep 02 2009
Comments