cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161591 The list of the B values in the common solutions to the 2 equations 13*k + 1 = A^2, 17*k + 1 = B^2.

Original entry on oeis.org

1, 16, 239, 3569, 53296, 795871, 11884769, 177475664, 2650250191, 39576277201, 590993907824, 8825332340159, 131788991194561, 1968009535578256, 29388354042479279, 438857301101610929, 6553471162481684656, 97863210136123658911, 1461394680879373199009
Offset: 1

Views

Author

Paul Weisenhorn, Jun 14 2009

Keywords

Comments

The 2 equations are equivalent to the Pell equation x^2 - 221*y^2 = 1, with x = (221*k+15)/2 and y = A*B/2, case C=13 in A160682.

Crossrefs

Cf. A160682 (sequence of A), A161584 (sequence of k).

Programs

  • Maple
    t:=0: for b from 1 to 1000000 do a:=sqrt((13*b^2+4)/17):
    if (trunc(a)=a) then t:=t+1: n:=(b^2-1)/17: print(t,a,b,n): end if: end do:
  • Mathematica
    LinearRecurrence[{15,-1},{1,16},30] (* Harvey P. Dale, Dec 04 2015 *)
  • Sage
    [(lucas_number2(n,15,1)-lucas_number2(n-1,15,1))/13 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009

Formula

B(t+2) = 15*B(t+1) - B(t).
B(t) = ((221+17*w)*((15+w)/2)^(t-1) + (221-17*w)*((15-w)/2)^(t-1))/442 where w=sqrt(221).
B(t) = floor of ((221+17*w)*((15+w)/2)^(t-1))/442 = A078364(t-2) + A078364(t-1).
G.f.: x*(1+x)/(1-15*x+x^2).

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009