cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161599 The list of the B values in the common solutions to the 2 equations 15*k + 1 = A^2, 19*k + 1 = B^2.

Original entry on oeis.org

1, 18, 305, 5167, 87534, 1482911, 25121953, 425590290, 7209912977, 122142930319, 2069219902446, 35054595411263, 593858902089025, 10060546740102162, 170435435679647729, 2887341859813909231, 48914376181156809198, 828657053219851847135, 14038255528556324592097
Offset: 1

Views

Author

Paul Weisenhorn, Jun 14 2009

Keywords

Comments

The case C=15 of finding k such that C*k+1 and (C+4)*k+2 are both perfect squares (A160682).
The 2 equations are equivalent to the Pell equation x^2 - 285*y^2 = 1, with x = (285*k+17)/2 and y = A*B/2.

Crossrefs

Cf. A160682, A161595 (sequence of A), A161583 (sequence of k).

Programs

  • Maple
    t:=0: for b from 1 to 1000000 do a:=sqrt((15*b^2+4)/19):
    if (trunc(a)=a) then t:=t+1: n:=(b^2-1)/19: print(t,a,b,n): end if: end do:
  • Mathematica
    LinearRecurrence[{17,-1},{1,18},30] (* Harvey P. Dale, Jan 30 2024 *)
  • Sage
    [(lucas_number2(n,17,1)-lucas_number2(n-1,17,1))/15 for n in range(1, 20)] # Zerinvary Lajos, Nov 10 2009

Formula

B(t+2) = 17*B(t+1) - B(t).
B(t) = ((285+19*w)*((17+w)/2)^(t-1)+(285-19*w)*((17-w)/2)^(t-1))/570 where w=sqrt(285).
G.f.: (1+x)*x/(1-17*x+x^2).

Extensions

Edited, extended by R. J. Mathar, Sep 02 2009