A161610 Primes which are the sum of 3 distinct positive 5th powers.
9043, 17863, 32801, 40787, 43669, 50599, 62417, 76099, 101267, 104149, 107777, 135893, 160073, 164419, 249107, 249857, 256609, 259733, 266663, 340649, 348833, 365639, 430343, 504061, 545843, 554663, 604649, 627901, 640949, 762743, 776183
Offset: 1
Keywords
Examples
9043=6^5+4^5+3^5. 17863=7^5+4^5+2^5. 32801=8^5+2^5+1^5. 40787=8^5+6^5+3^5, 43669=8^5+6^5+5^5.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..5000
Programs
-
Mathematica
lst={};Do[Do[Do[p=n^5+m^5+k^5;If[PrimeQ[p],AppendTo[lst,p]],{n,m+1,3*4!}], {m,k+1,6!}],{k,2*6!}];Take[Union[lst],5! ] Module[{upto=10^6},Select[Total/@Subsets[Range[Ceiling[Surd[upto,5]]]^5,{3}], PrimeQ[#]&<=upto&]]//Union (* Harvey P. Dale, May 01 2019 *)
Comments