cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161623 Greatest k for which the Andrica-like conjectural inequalities, prime(k+1)-prime(k)-(1/n)*sqrt(prime(k)) < 0, appear to fail, based on empirical evidence.

Original entry on oeis.org

30, 429, 3644, 4612, 14357, 31545, 40933, 49414, 104071, 149689, 149689, 149689, 149689, 165326, 325852, 325852, 415069, 415069, 491237, 566214
Offset: 1

Views

Author

Daniel Tisdale, Jun 15 2009

Keywords

Comments

This is a family of increasingly restrictive Andrica-like conjectures that all imply Legendre's conjecture.

Examples

			For n = 1, one needs k > 30 for the inequality to hold, and it is conjectured that it holds for all k > 30. In words, the first such inequality says that we expect to see a new prime prime(k+1) between prime(k) and prime(k)+sqrt(prime(k)) for k>30.
		

Crossrefs

Cf. A084976.

Programs

  • Mathematica
    Block[{nn = 1500000, p, q}, Array[Set[p[#], Prime[#]] &, nn + 1]; Array[Set[q[#], (p[# + 1] - p[#])^2] &, nn]; TakeWhile[Monitor[Table[nn - LengthWhile[Table[# q[k] < p[k], {k, nn, 1, -1}], # &] &[n^2], {n, 24}], {n, k}], # < nn/2 &]] (* Michael De Vlieger, Aug 17 2022 *)
  • PARI
    lista(nn) = my(N=10^7, vp=primes(N), va=vector(nn)); for (n=1, nn, my(v = v=vector(N-1, k, n^2*(vp[k+1]-vp[k])^2 < vp[k])); forstep(k=N-1, 1, -1, if (!v[k], va[n] = k; break));); va; \\ Michel Marcus, Aug 17 2022

Extensions

a(2) corrected, name edited and more terms from Michel Marcus, Aug 17 2022