cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161808 G.f.: A(q) = exp( Sum_{n>=1} A162552(n) * 3*A038500(n) * q^n/n ).

Original entry on oeis.org

1, 3, 3, 3, 9, 12, 12, 27, 36, 57, 141, 165, 135, 321, 450, 399, 780, 1068, 1308, 2913, 3537, 2736, 5940, 8430, 7173, 13251, 18267, 17661, 35007, 45051, 31866, 58506, 85890, 65694, 102000, 145293, 101547, 140574, 203781, 114765, 93051, 161754
Offset: 0

Views

Author

Paul D. Hanna, Jul 21 2009

Keywords

Comments

A162552 forms the l.g.f. of log[ Sum_{n>=0} x^(n^2) ], and
A038500(n) is the highest power of 3 dividing n.
The first negative term is a(43) = -162729.

Examples

			G.f.: A(q) = 1 + 3*q + 3*q^2 + 3*q^3 + 9*q^4 + 12*q^5 + 12*q^6 +...
log(A(q)) = 3*q - 3*q^2/2 + 9*q^3/3 + 9*q^4/4 - 12*q^5/5 + 45*q^6/6 - 18*q^7/7 +...
Compare to: q - q^2/2 + q^3/3 + 3*q^4/4 - 4*q^5/5 + 5*q^6/6 - 6*q^7/7 +...
which equals log( Sum_{n>=0} q^(n^2) ) as described by A162552.
		

Crossrefs

Cf. A161804 (variant).

Programs

  • PARI
    {a(n)=local(Q=sum(m=0,n,x^(m^2))+x*O(x^n),A); A=exp(sum(k=1,n,polcoeff(log(Q),k)*3*3^valuation(k,3)*x^k)+x*O(x^n));polcoeff(A,n)}