A161804
G.f.: A(q) = exp( Sum_{n>=1} A002129(n) * 3*A038500(n) * q^n/n ).
Original entry on oeis.org
1, 3, 3, 12, 30, 27, 66, 141, 111, 255, 513, 378, 903, 1815, 1356, 2970, 5727, 4131, 8571, 15882, 10881, 23001, 42417, 29106, 59763, 108165, 73500, 145164, 255831, 167643, 333693, 585258, 382053, 751059, 1302966, 849339, 1623009, 2762349
Offset: 0
G.f.: A(q) = 1 + 3*q + 3*q^2 + 12*q^3 + 30*q^4 + 27*q^5 + 66*q^6 + ...
log(A(q)) = 3*q - 3*q^2 + 36*q^3 - 15*q^4 + 18*q^5 - 36*q^6 + 24*q^7 + ...
Sum_{n>=1} A002129(n)*q^n/n = log(1 + q + q^3 + q^6 + q^10 + q^15 + ...),
Sum_{n>=1} 3*A038500(n)*x^n/n = log of the g.f. of A161809.
TRISECTIONS:
T_0(q) = 1 + 12*q + 66*q^2 + 255*q^3 + 903*q^4 + 2970*q^5 + ... (A161805)
T_1(q) = 3 + 30*q + 141*q^2 + 513*q^3 + 1815*q^4 + 5727*q^5 + ... (A161806)
T_2(q) = 3 + 27*q + 111*q^2 + 378*q^3 + 1356*q^4 + 4131*q^5 + ... (A161807)
where T_1(-q)/T_0(-q)/3 equals (cf. A132977):
1 + 2*q + 5*q^2 + 12*q^3 + 26*q^4 + 50*q^5 + 92*q^6 + 168*q^7 + ...
and T_2(-q)/T_0(-q)/3 equals (cf. A132978):
1 + 3*q + 7*q^2 + 15*q^3 + 32*q^4 + 63*q^5 + 114*q^6 + 201*q^7 + ...
also, T_2(q)/T_1(q) equals (cf. A092848):
1 - q + 2*q^3 - 2*q^4 - q^5 + 4*q^6 - 4*q^7 - q^8 + 8*q^9 - 8*q^10 + ...
-
{a(n)=local(L=sum(m=1, n,3*3^valuation(m,3)*sumdiv(m, d, -(-1)^d*d)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
A182000
G.f.: exp( Sum_{n>=1} 2^A090740(n) * x^n/n ) where A090740(n) = highest exponent of 2 in 3^n-1.
Original entry on oeis.org
1, 2, 6, 10, 22, 34, 62, 90, 150, 210, 326, 442, 654, 866, 1230, 1594, 2198, 2802, 3766, 4730, 6230, 7730, 9998, 12266, 15630, 18994, 23878, 28762, 35742, 42722, 52526, 62330, 75926, 89522, 108118, 126714, 151878, 177042, 210702, 244362, 288982, 333602, 392182
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 10*x^3 + 22*x^4 + 34*x^5 + 62*x^6 +...
The g.f. satisfies:
A(x)/A(x^2) = 1 + 2*x + 4*x^2 + 6*x^3 + 8*x^4 + 10*x^5 +...+ 2*n*x^n +...
The logarithm of the g.f. begins:
log(A(x)) = 2*x + 8*x^2/2 + 2*x^3/3 + 16*x^4/4 + 2*x^5/5 + 8*x^6/6 + 2*x^7/7 + 32*x^8/8 + 2*x^9/9 + 8*x^10/10 + 2*x^11/11 + 16*x^12/12 +...+ 2^A090740(n)*x^n/n +...
where the highest exponents of 2 in 3^n-1, for n>=1, begins:
A090740 = [1,3,1,4,1,3,1,5,1,3,1,4,1,3,1,6,1,3,1,4,1,3,1,5,1,3,1,4,1,...].
The g.f.s of the BISECTIONS begin:
B_0(x) = 1 + 6*x + 22*x^2 + 62*x^3 + 150*x^4 + 326*x^5 + 654*x^6 +...
B_1(x) = 2 + 10*x + 34*x^2 + 90*x^3 + 210*x^4 + 442*x^5 + 866*x^6 +...
where 2 * B_0(x) / B_1(x) = 1+x.
-
{a(n)=polcoeff(exp(sum(m=1,n+1,2^valuation(3^m-1,2)*x^m/m)+x*O(x^n)),n)}
for(n=0,40,print1(a(n),", "))
-
{a(n)=local(A=1+x);for(i=1,#binary(n)+1,A=(1+x^2)/(1-x)^2*subst(A,x,x^2+x*O(x^n)));polcoeff(A,n)}
A183038
G.f.: exp( Sum_{n>=1} A051064(n)*3^A051064(n)*x^n/n ) where A051064(n) equals the 3-adic valuation of 3n.
Original entry on oeis.org
1, 3, 6, 15, 30, 51, 93, 156, 240, 387, 597, 870, 1311, 1920, 2697, 3873, 5448, 7422, 10278, 14016, 18636, 25098, 33402, 43548, 57333, 74757, 95820, 123780, 158637, 200391, 254778, 321798, 401451, 503490, 627915, 774726, 960156, 1184205, 1446873
Offset: 0
G.f.: A(x) = 1 + 3*x + 6*x^2 + 15*x^3 + 30*x^4 + 51*x^5 + 93*x^6 +...
log(A(x)) = 3*x + 3*x^2/2 + 18*x^3/3 + 3*x^4/4 + 3*x^5/5 + 18*x^6/6 + 3*x^7/7 + 3*x^8/8 + 81*x^9/9 + 3*x^10/10 + 3*x^11/11 + 18*x^12/12 +...
G.f. satisfies A(x) = A(x^3)*G(x) where G(x) is the g.f. of A161809:
G(x) = 1 + 3*x + 6*x^2 + 12*x^3 + 21*x^4 + 33*x^5 + 51*x^6 +...
TRISECTIONS of g.f. begin:
T_0(x) = 1 + 15*x + 93*x^2 + 387*x^3 + 1311*x^4 + 3873*x^5 +...
T_1(x) = 3 + 30*x + 156*x^2 + 597*x^3 + 1920*x^4 + 5448*x^5 +...
T_2(x) = 6 + 51*x + 240*x^2 + 870*x^3 + 2697*x^4 + 7422*x^5 +...
where the ratios involve Fibonacci numbers:
T_1(x)/T_0(x) = 3*(1 - 5*x + 34*x^2 - 233*x^3 +...+ (-1)^n*Fibonacci(4n+1)*x^n +...);
T_2(x)/T_0(x) = 3*(2 - 13*x + 89*x^2 - 610*x^3 +...+ (-1)^n*Fibonacci(4n+3)*x^n +...).
-
{a(n)=polcoeff(exp(sum(m=1,n,valuation(3*m,3)*3^valuation(3*m,3)*x^m/m)+x*O(x^n)),n)}
A182185
G.f.: exp( Sum_{n>=1} 3^b(n) * x^n/n ) where b(n) = highest exponent of 3 in 2^n+1.
Original entry on oeis.org
1, 3, 5, 9, 15, 21, 29, 39, 49, 63, 81, 99, 123, 153, 183, 219, 261, 303, 353, 411, 469, 537, 615, 693, 781, 879, 977, 1089, 1215, 1341, 1485, 1647, 1809, 1989, 2187, 2385, 2607, 2853, 3099, 3375, 3681, 3987, 4323, 4689, 5055, 5457, 5895, 6333, 6813, 7335, 7857, 8421
Offset: 0
G.f.: A(x) = 1 + 3*x + 5*x^2 + 9*x^3 + 15*x^4 + 21*x^5 + 29*x^6 + 39*x^7 +...
The g.f. satisfies:
A(x)/A(x^3) = 1 + 3*x + 5*x^2 + 6*x^3 + 6*x^4 + 6*x^5 +...+ 6*x^n +...
The logarithm of the g.f. begins:
log(A(x)) = 3*x + x^2/2 + 9*x^3/3 + x^4/4 + 3*x^5/5 + x^6/6 + 3*x^7/7 + x^8/8 + 27*x^9/9 + x^10/10 + 3*x^11/11 + x^12/12 +...+ 3^b(n)*x^n/n +...
where b(n) = highest exponent of 3 in 2^n+1, for n>=1, and begins:
b = [1,0,2,0,1,0,1,0,3,0,1,0,1,0,2,0,1,0,1,0,2,0,1,0,1,0,4,...].
The g.f.s of the TRISECTIONS begin:
T_0(x) = 1 + 9*x + 29*x^2 + 63*x^3 + 123*x^4 + 219*x^5 + 353*x^6 +...
T_1(x) = 3 + 15*x + 39*x^2 + 81*x^3 + 153*x^4 + 261*x^5 + 411*x^6 +...
T_2(x) = 5 + 21*x + 49*x^2 + 99*x^3 + 183*x^4 + 303*x^5 + 469*x^6 +...
where T_1(x)/T_0(x) = 3*(1+x)/(1+5*x), T_2(x)/T_0(x) = (5+x)/(1+5*x).
-
{a(n)=polcoeff(exp(sum(m=1, n+1, 3^valuation(2^m+1, 3)*x^m/m)+x*O(x^n)), n)}
for(n=0, 65, print1(a(n), ", "))
-
{a(n)=local(A=1+x);for(i=1,ceil(log(n+1)/log(3)),A=(1-x^2)*(1-x^3)/(1-x)^3*subst(A,x,x^3+x*O(x^n)));polcoeff(A,n)}
A195760
G.f.: A(x) = exp( Sum_{n>=1} 5*5^A112765(n) * x^n/n ), where A112765 is the exponent of the highest power of 5 dividing n.
Original entry on oeis.org
1, 5, 15, 35, 70, 130, 230, 390, 635, 995, 1515, 2255, 3290, 4710, 6620, 9160, 12505, 16865, 22485, 29645, 38695, 50055, 64215, 81735, 103245, 129505, 161405, 199965, 246335, 301795, 367855, 446255, 538965, 648185, 776345, 926265, 1101155, 1304615, 1540635
Offset: 0
G.f.: A(x) = 1 + 5*x + 15*x^2 + 35*x^3 + 70*x^4 + 130*x^5 + 230*x^6 +...
log(A(x)) = 5*x + 5*x^2/2 + 5*x^3/3 + 5*x^4/4 + 25*x^5/5 + 5*x^6/6 + 5*x^7/7 + 5*x^8/8 + 5*x^9/9 + 25*x^10/10 +...
The coefficients in the QUINTISECTIONS of g.f. A(x) begin:
Q0: [1, 130, 1515, 9160, 38695, 129505, 367855, 926265, 2128510, ...];
Q1: [5, 230, 2255, 12505, 50055, 161405, 446255, 1101155, 2491030, ...];
Q2: [15, 390, 3290, 16865, 64215, 199965, 538965, 1304615, 2907440, ...];
Q3: [35, 635, 4710, 22485, 81735, 246335, 648185, 1540635, 3384660, ...];
Q4: [70, 995, 6620, 29645, 103245, 301795, 776345, 1813595, 3930245, ...].
The coefficients in the products Q2*Q3 and Q1*Q4 begin:
Q2(x)*Q3(x): [525, 23175, 433450, 4853600, 38447875, 236756775, ...];
Q1(x)*Q4(x): [350, 21075, 419800, 4789900, 38209000, 235990975, ...];
where Q2(x)*Q3(x) - Q1(x)*Q4(x) = 175*(1-x)^6/R(x)^2, and
R(x) = 1 - 9*x + 36*x^2 - 84*x^3 + 126*x^4 - 130*x^5 + 120*x^6 +...
-
{a(n)=local(N=ceil(log(n+6)/log(5)));polcoeff(1/(1-x+x*O(x^n))^5/prod(k=1,N,(1-x^(5^k) +x*O(x^n))^4),n)}
-
{a(n)=local(L=sum(m=1, n, 5*5^valuation(m, 5)*x^m/m)+x*O(x^n)); polcoeff(exp(L), n)}
A377555
E.g.f.: exp(Sum_{n>=1} A038500(n) * x^n).
Original entry on oeis.org
1, 1, 3, 25, 121, 861, 10051, 88453, 972945, 16663321, 205667011, 3069838641, 61038456073, 997387656565, 18623707785411, 426663334715101, 8606752819074721, 192052302116929713, 5139946157328092035, 122142504609497184841, 3172736666738570349081, 94751480557190553846541
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sum[3^IntegerExponent[k, 3]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0,nmax]!
A377556
E.g.f.: exp(Sum_{n>=1} A006519(n) * x^n).
Original entry on oeis.org
1, 1, 5, 19, 193, 1181, 13021, 117895, 1868609, 20980153, 348219541, 4940639771, 98898110785, 1632238421269, 34910480911853, 672959412044431, 16733065940227201, 359936040496423025, 9469928134781142949, 229631546862609396643, 6716832478519734558401, 178344294076141938008461
Offset: 0
-
nmax = 25; CoefficientList[Series[Exp[Sum[2^IntegerExponent[k, 2]*x^k, {k, 1, nmax}]], {x, 0, nmax}], x] * Range[0,nmax]!
Showing 1-7 of 7 results.
Comments