A161878 Number of reduced words of length n in the Weyl group B_18.
1, 18, 170, 1122, 5813, 25176, 94791, 318630, 974643, 2752112, 7253764, 18003544, 42378246, 95162260, 204856291, 424515042, 849825768, 1648470894, 3106669575, 5701318544, 10209535182, 17871860844, 30631158960, 51476623220, 84931612739
Offset: 0
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..324
Crossrefs
Row n=18 of A128084.
Formula
G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Comments