A161903 Convert n into a sequence of binary digits, apply one step of the rule 110 cellular automaton, and interpret the results as a binary integer.
0, 3, 6, 7, 12, 15, 14, 13, 24, 27, 30, 31, 28, 31, 26, 25, 48, 51, 54, 55, 60, 63, 62, 61, 56, 59, 62, 63, 52, 55, 50, 49, 96, 99, 102, 103, 108, 111, 110, 109, 120, 123, 126, 127, 124, 127, 122, 121, 112, 115, 118, 119, 124, 127, 126, 125, 104, 107, 110, 111, 100, 103, 98, 97, 192, 195, 198, 199, 204, 207, 206, 205, 216, 219, 222, 223, 220, 223, 218, 217, 240, 243, 246, 247, 252, 255, 254, 253, 248, 251, 254, 255, 244, 247, 242, 241, 224, 227, 230, 231, 236
Offset: 0
Examples
For n=19, the evolution after one step is 0, 1, 0, 0, 1, 1 (n=19) 1, 1, 0, 1, 1, 1 (a(n)=55) So a(n)=55.
Links
- T. D. Noe, Table of n, a(n) for n = 0..1023
- Index entries for sequences related to cellular automata
- Eric Weisstein's World of Mathematics, Rule 110
- Wikipedia, Rule 110
Crossrefs
Programs
-
Mathematica
a[n_] := FromDigits[ Drop[Part[CellularAutomaton[110, {IntegerDigits[n, 2], 0}], 1], -1], 2];Table[a[n],{n,0,100}]
Comments