cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A161918 Numbers n such that the sum of the divisors minus the sum of the prime factors (counted with multiplicity) is equal to n+1.

Original entry on oeis.org

6, 8, 10, 14, 15, 21, 22, 26, 33, 34, 35, 38, 39, 46, 51, 55, 57, 58, 62, 65, 69, 74, 77, 82, 85, 86, 87, 91, 93, 94, 95, 106, 111, 115, 118, 119, 122, 123, 129, 133, 134, 141, 142, 143, 145, 146, 155, 158, 159, 161, 166, 177, 178, 183, 185, 187, 194, 201, 202, 203
Offset: 1

Views

Author

Keywords

Comments

Equals A006881 union {8}. - Franklin T. Adams-Watters, Jun 26 2009

Examples

			n=21: Sum_divisors (1,3,7,21) = 32; Sum_prime_factors (3,7) = 10 -> 32-10 = 22. n=55: Sum_divisors (1,5,11,55) = 72; Sum_prime_factors (5,11) = 16 -> 72-16 = 56.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(i) local b,c,j,s,n; for n from 2 by 1 to i do b:=(convert(ifactors(n),`+`)-1); c:=nops(b); j:=0; s:=0; for j from c by -1 to 1 do s:=s+convert(b[j],`*`); od; if n=sigma(n)-s-1 then print(n); fi; od; end: P(500);
  • Mathematica
    Select[Range[203], DivisorSigma[1, #] - Total[Times @@@ FactorInteger[#]] == # + 1 &] (* Jayanta Basu, Aug 11 2013 *)
  • PARI
    \\ from M. F. Hasler
    isA161918(n)={ n+1 == sigma(n)-(n=factor(n))[,1]~*n[,2] }
    for(n=1,500, isA161918(n)&print1(n","))

Extensions

Edited by N. J. A. Sloane, Jun 27 2009 incorporating suggestions from R. J. Mathar, M. F. Hasler, Benoit Jubin and others.

A191580 Numbers n for which the sum of their prime factors (with repetition) divides the sum of their anti-divisors.

Original entry on oeis.org

5, 10, 40, 41, 129, 135, 140, 155, 182, 189, 200, 204, 206, 238, 375, 429, 435, 441, 455, 475, 546, 564, 574, 616, 625, 678, 722, 744, 765, 836, 856, 902, 1035, 1056, 1170, 1188, 1272, 1296, 1344, 1518, 1650, 1764, 1806, 1918, 1925
Offset: 1

Views

Author

Paolo P. Lava, Jun 07 2011

Keywords

Examples

			40-> sum prime factors=2+2+2+5=11; sum anti-divisors=3+9+16+27=55; 55/11=5
129-> sum prime factors=3+43=46; sum anti-divisors=2+6+7+37+86=138; 138/46=3
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(i) local a,b,j,k,s,n;
    for n from 3 to i do b:=ifactors(n)[2];
    s:=add(b[k][1]*b[k][2],k=1..nops(b));
    k:=0; j:=n; while j mod 2<>1 do k:=k+1; j:=j/2; od; a:=sigma(2*n+1)+sigma(2*n-1)+sigma(n/2^k)*2^(k+1)-6*n-2;
    if type(a/s,integer) then print(n); fi; od; end: P(2000);

A191581 Numbers whose sum of their anti-divisors divides the sum of their divisors.

Original entry on oeis.org

3, 6, 11, 22, 30, 33, 65, 82, 117, 218, 354, 483, 508, 537, 3276, 6430, 21541, 117818, 130356, 753612, 1007328, 2113416, 2379540, 3589646, 7231219, 7346148, 8515767, 13050345, 20199648, 34424166, 44575896, 47245905, 50414595, 104335023, 217728002, 1217532421
Offset: 1

Views

Author

Paolo P. Lava, Jun 07 2011

Keywords

Comments

A161917 is a subsequence of this sequence.

Examples

			6-> sum divisors=sigma(6)=12; sum anti-divisors=4; 12/4=3.
30-> sum divisors=sigma(30)=72; sum anti-divisors=4+12+20=36; 72/36=2.
		

Crossrefs

Programs

Formula

{n: A066417(n) | A000203(n)}. - R. J. Mathar, Oct 01 2011

Extensions

a(21)-a(36) from Donovan Johnson, Jun 24 2012

A257048 Numbers n for which the sum of their prime factors (with repetition) divides the Euler totient function.

Original entry on oeis.org

9, 15, 16, 25, 27, 35, 42, 49, 72, 95, 119, 121, 140, 143, 154, 168, 169, 200, 209, 220, 240, 256, 264, 287, 288, 289, 297, 315, 319, 323, 342, 343, 361, 364, 377, 378, 442, 483, 490, 520, 525, 527, 529, 540, 559, 585, 588, 616, 620, 624, 625, 648, 693, 702, 729
Offset: 1

Views

Author

Paolo P. Lava, Apr 15 2015

Keywords

Examples

			The value of Euler totient function for n = 15 is 8. Prime factors of 15 are 3, 5 and their sum is 3 + 5 = 8. Finally, 8 / 8 = 1.
The value of Euler totient function for n = 140 is 48. Prime factors of 140 are 2, 2, 5, 7 and their sum is 2 + 2 + 5 + 7 = 16. Finally, 48 / 16 = 3.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n;
    for n from 1 to q do a:=ifactors(n)[2];
    if type(phi(n)/add(a[k][1]*a[k][2],k=1..nops(a)),integer)
    then print(n); fi; od; end: P(10^9);
  • Mathematica
    Rest@ Select[Range@ 729, Mod[EulerPhi@ #, Total@ Flatten[Table[#1, {#2}] & @@@ FactorInteger@ #]] == 0 &] (* Michael De Vlieger, Apr 15 2015 *)
Showing 1-4 of 4 results.