A161931 Number of reduced words of length n in the Weyl group B_24.
1, 24, 299, 2576, 17249, 95656, 457170, 1934920, 7396155, 25914720, 84197296, 256013184, 734002335, 1996645640, 5180091511, 12874497504, 30770197710, 70952341040, 158302199085, 342599792520, 720836052690, 1477396844040, 2954878145505, 5776377855120, 11052719207369
Offset: 0
References
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
- N. Bourbaki, Groupes et alg. de Lie, Chap. 4, 5, 6. (The group is defined in Planche II.)
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..576
Crossrefs
Row n=24 of A128084.
Formula
G.f. for B_m is the polynomial Prod_{k=1..m}(1-x^(2k))/(1-x). Only finitely many terms are nonzero. This is a row of the triangle in A128084.
Comments