A161992 Numbers which squared are a sum of 3 distinct nonzero squares.
7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87
Offset: 1
Keywords
Examples
7^2 = 2^2 + 3^2 + 6^2. 9^2 = 1^2 + 4^2 + 8^2. 11^2 = 2^2 + 6^2 + 9^2. 15^2 = 2^2 + 5^2 + 14^2.
Links
- David A. Corneth, Table of n, a(n) for n = 1..10000
Programs
-
Maple
isA004432 := proc(n) local x,y,z2 ; for x from 1 do if x^2 > n then break; fi; for y from 1 to x-1 do z2 := n-x^2-y^2 ; if z2 < y^2 and z2 > 0 then if issqr(z2) then RETURN(true) ; fi; fi; od: od: false ; end: isA161992 := proc(n) isA004432(n^2) ; end: for n from 1 do if isA161992(n) then printf("%d\n",n) ; fi; od: # R. J. Mathar, Sep 22 2009
-
Mathematica
lst={};Do[Do[Do[a=(x^2+y^2+z^2)^(1/2);If[a==IntegerPart[a],AppendTo[lst, a]],{z,y+1,2*5!}],{y,x+1,2*5!}],{x,5!}];lst;q=Take[Union[%],150]
-
PARI
is(n) = n>>=valuation(n, 2); n > 5 \\ David A. Corneth, Sep 18 2020
Extensions
Definition rephrased by R. J. Mathar, Sep 22 2009
Comments