cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A161992 Numbers which squared are a sum of 3 distinct nonzero squares.

Original entry on oeis.org

7, 9, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 81, 82, 83, 84, 85, 86, 87
Offset: 1

Views

Author

Keywords

Comments

Square roots of squares in A004432. - R. J. Mathar, Sep 22 2009

Examples

			7^2 = 2^2 + 3^2 + 6^2. 9^2 = 1^2 + 4^2 + 8^2. 11^2 = 2^2 + 6^2 + 9^2. 15^2 = 2^2 + 5^2 + 14^2.
		

Crossrefs

Programs

  • Maple
    isA004432 := proc(n) local x,y,z2 ; for x from 1 do if x^2 > n then break; fi; for y from 1 to x-1 do z2 := n-x^2-y^2 ; if z2 < y^2 and z2 > 0 then if issqr(z2) then RETURN(true) ; fi; fi; od: od: false ; end:
    isA161992 := proc(n) isA004432(n^2) ; end:
    for n from 1 do if isA161992(n) then printf("%d\n",n) ; fi; od: # R. J. Mathar, Sep 22 2009
  • Mathematica
    lst={};Do[Do[Do[a=(x^2+y^2+z^2)^(1/2);If[a==IntegerPart[a],AppendTo[lst, a]],{z,y+1,2*5!}],{y,x+1,2*5!}],{x,5!}];lst;q=Take[Union[%],150]
  • PARI
    is(n) = n>>=valuation(n, 2); n > 5 \\ David A. Corneth, Sep 18 2020

Extensions

Definition rephrased by R. J. Mathar, Sep 22 2009