A161999 For n even a(n) = a(n-1) + 10*a(n-2), for n odd a(n) = a(n-3) + 10 a(n-2); with a(1) = 0, a(2) = 1.
0, 1, 1, 10, 20, 101, 301, 1030, 4040, 10601, 51001, 110050, 620060, 1151501, 7352101, 12135070, 85656080, 128702801, 985263601, 1372684090, 11225320100, 14712104501, 126965305501, 158346365110, 1427999420120
Offset: 1
Examples
As pairs: 0, 1 1, 10 20, 101 301, 1030 4040, 10601 51001, 110050 620060, 1151501 7352101, 12135070 85656080, 128702801
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (0, 20, 0, -99).
Crossrefs
Programs
-
Mathematica
nxt[{n_,a_,b_,c_}]:={n+1,b,c,If[OddQ[n],c+10b,a+10b]}; NestList[nxt,{2,0,1,1},30][[All,2]] (* or *) LinearRecurrence[{0,20,0,-99},{0,1,1,10},30] (* Harvey P. Dale, May 03 2018 *)
Formula
a(n)=20*a(n-2)-99*a(n-4). G.f.: -x^2*(-1-x+10*x^2)/((3*x-1)*(3*x+1)*(11*x^2-1)). [From R. J. Mathar, Jul 13 2009]
Extensions
Edited by N. J. A. Sloane, Jun 30 2009
NAME adapted to offset. - R. J. Mathar, Jun 19 2021