cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162142 Numbers that are the cube of a product of two distinct primes (p^3*q^3).

Original entry on oeis.org

216, 1000, 2744, 3375, 9261, 10648, 17576, 35937, 39304, 42875, 54872, 59319, 97336, 132651, 166375, 185193, 195112, 238328, 274625, 328509, 405224, 456533, 551368, 614125, 636056, 658503, 753571, 804357, 830584, 857375, 1191016, 1367631, 1520875, 1643032
Offset: 1

Views

Author

Keywords

Comments

Subset of A046306, of A000578, and of A007774. - R. J. Mathar, Jun 27 2009

Examples

			216=2^3*3^3. 1000=2^3*5^3. 2744=2^3*7^3.
		

Crossrefs

Programs

  • Mathematica
    fQ[n_]:=Last/@FactorInteger[n]=={3,3}; lst={};Do[If[fQ[n],AppendTo[lst, n]],{n,6*9!}];lst
    With[{nn=30},Select[Union[(Times@@@Subsets[Prime[Range[nn]],{2}])^3],#<= (2Prime[ nn])^3&]](* Harvey P. Dale, May 27 2024 *)
  • Python
    from math import isqrt
    from sympy import primepi, primerange
    def A162142(n):
        def f(x): return int(n+x+(t:=primepi(s:=isqrt(x)))+(t*(t-1)>>1)-sum(primepi(x//k) for k in primerange(1, s+1)))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m**3 # Chai Wah Wu, Dec 09 2024

Formula

a(n) = (A006881(n))^3 = A000578(A006881(n)). - R. J. Mathar, Jun 27 2009
Sum_{n>=1} 1/a(n) = (P(3)^2 - P(6))/2 = (A085541^2 - A085966)/2 = 0.006735..., where P is the prime zeta function. - Amiram Eldar, Jul 06 2020

Extensions

Definition rephrased by R. J. Mathar, Jun 27 2009