cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A165226 Numerator of 1 - A164555(n)/A027642(n).

Original entry on oeis.org

0, 1, 5, 1, 31, 1, 41, 1, 31, 1, 61, 1, 3421, 1, -1, 1, 4127, 1, -43069, 1, 174941, 1, -854375, 1, 236366821, 1, -8553097, 1, 23749461899, 1, -8615841261683, 1, 7709321041727, 1, -2577687858361, 1, 26315271553055396563, 1, -2929993913841553, 1
Offset: 0

Views

Author

Paul Curtz, Sep 09 2009

Keywords

Comments

If n != 1, also the numerator of 1 - Bernoulli(n). The denominators are in A027642.
(There are no common factors to be canceled in the fractions.)
The numerators of 1 - Bernoulli(n) start 0, 3, 5,1, 31, ... and differ only at n=1 from this sequence.
E.g.f. for the rationals r(n) = a(n)/A027642(n) = 1 - A164555(n)/A027642(n): exp(x)*(1 - x/(exp(x) - 1)). - Wolfdieter Lang, Aug 07 2017

Examples

			The rationals r(n) begin: 0, 1/2, 5/6, 1, 31/30, 1, 41/42, 1, 31/30, 1, 61/66, 1, 3421/2730, 1, -1/6, 1, 4127/510, 1, -43069/798, 1, ... - _Wolfdieter Lang_, Aug 07 2017
		

Crossrefs

Programs

  • Maple
    A165226 := proc(n) if n = 1 then 1+bernoulli(n) ; else 1-bernoulli(n) ; end if; numer(%) ; end proc: # R. J. Mathar, Jan 16 2011

Formula

|a(2n)| = A162173(n+1).
a(2n+1) = 1.

A165161 Numerator of the n-th term in the first differences of the binomial transform of the "original" Bernoulli numbers.

Original entry on oeis.org

1, 2, 5, 29, 31, 43, 41, 29, 31, 71, 61, 2039, 3421, 13, -1, -3107, 4127, 44665, -43069, -174281, 174941, 854651, -854375, -236361361, 236366821, 8553109, -8553097, -23749460159, 23749461899, 8615841290327
Offset: 0

Views

Author

Paul Curtz, Sep 06 2009

Keywords

Comments

The binomial transform of the "original" Bernoulli numbers is 1, 3/2, 13/6, ... as mentioned in A164558.
The first differences of that sequence are 3/2 - 1 = 1/2, 13/6 - 3/2 = 2/3, 5/6, 29/30, 31/30, ... and the numerators of these differences are listed here.
The bisection a(2n) reappears (up to signs) as A162173(n+1).

Crossrefs

Cf. A051717 (denominators), A164555, A027642.

Programs

  • Maple
    read("transforms") :
    A164555 := proc(n) if n <= 2 then 1; else numer(bernoulli(n)) ; end if; end proc:
    A027642 := proc(n) denom(bernoulli(n)) ; end proc:
    nmax := 40:
    BINOMIAL([seq(A164555(n)/A027642(n), n=0..nmax)]) :
    map(numer,DIFF(%)) ; # R. J. Mathar, Jul 07 2011

Formula

a(2n) + A000367(n) = A006954(n+1) = A051717(2n+1).
a(2n+1) + a(2n+2) = A051717(2n+2) + A051717(2n+3), n > 0.
Showing 1-2 of 2 results.