A162248 Number of reduced words of length n in the Weyl group D_10.
1, 10, 54, 210, 659, 1772, 4235, 9218, 18590, 35178, 63063, 107900, 177243, 280850, 430939, 642364, 932680, 1322068, 1833095, 2490290, 3319525, 4347200, 5599243, 7099950, 8870703, 10928616, 13285169, 15944898, 18904214, 22150426, 25661040, 29403398, 33334708, 37402498
Offset: 0
References
- N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10a, page 231, W(t).
- J. E. Humphreys, Reflection Groups and Coxeter Groups, Cambridge, 1990. See under Poincaré polynomial.
Links
Crossrefs
Row 10 of A162206.
Growth series for groups D_n, n = 3,...,50: A161435, A162207, A162208, A162209, A162210, A162211, A162212, A162288, A162297, A162300, A162301, A162321, A162327, A162328, A162346, A162347, A162359, A162360, A162364, A162365, A162366, A162367, A162368, A162369, A162370, A162376, A162377, A162378, A162379, A162380, A162381, A162384, A162388, A162389, A162392, A162399, A162402, A162403, A162411, A162412, A162413, A162418, A162452, A162456, A162461, A162469, A162492.
Programs
-
Maple
# Growth series for D_k, truncated to terms of order M. - N. J. A. Sloane, Aug 07 2021 f := proc(m::integer) (1-x^m)/(1-x) ; end proc: g := proc(k,M) local a,i; global f; a:=f(k)*mul(f(2*i),i=1..k-1); seriestolist(series(a,x,M+1)); end proc;
-
Mathematica
x = y + y O[y]^(n^2); (1-x^n) Product[1-x^(2k), {k, 1, n-1}]/(1-x)^n // CoefficientList[#, y]& (* Jean-François Alcover, Mar 25 2020, from A162206 *)
Formula
The growth series for D_k is the polynomial f(k)*Prod_{i=1..k-1} f(2*i), where f(m) = (1-x^m)/(1-x) [Corrected by N. J. A. Sloane, Aug 07 2021]. This is a row of the triangle in A162206.
Extensions
Entry revised by N. J. A. Sloane, Jan 17 2016
Data corrected by Jean-François Alcover, Mar 25 2020