A162260 a(n) = (n^3 + 4*n^2 - n)/2.
2, 11, 30, 62, 110, 177, 266, 380, 522, 695, 902, 1146, 1430, 1757, 2130, 2552, 3026, 3555, 4142, 4790, 5502, 6281, 7130, 8052, 9050, 10127, 11286, 12530, 13862, 15285, 16802, 18416, 20130, 21947, 23870, 25902, 28046, 30305, 32682, 35180, 37802
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A154614.
Programs
-
Mathematica
CoefficientList[Series[(2+3*x-2*x^2)/(1-x)^4,{x,0,40}],x] (* or *) LinearRecurrence[{4, -6, 4, -1}, {2, 11, 30, 62}, 50] (* Vincenzo Librandi, Mar 05 2012 *) Table[(n^3+4 n^2-n)/2,{n,50}] (* Harvey P. Dale, Jul 05 2020 *)
Formula
Row sums from A154614: a(n) = Sum_{m=1..n} (m*n + m + n - 1).
From Vincenzo Librandi, Mar 05 2012: (Start)
G.f.: x*(2 + 3*x - 2*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Extensions
New name from Vincenzo Librandi, Mar 05 2012
Comments