A162266 a(n) = (2*n^3 + 5*n^2 + 21*n)/2.
14, 39, 81, 146, 240, 369, 539, 756, 1026, 1355, 1749, 2214, 2756, 3381, 4095, 4904, 5814, 6831, 7961, 9210, 10584, 12089, 13731, 15516, 17450, 19539, 21789, 24206, 26796, 29565, 32519, 35664, 39006, 42551, 46305, 50274, 54464, 58881, 63531
Offset: 1
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
Crossrefs
Cf. A155704.
Programs
-
Mathematica
LinearRecurrence[{4, -6, 4, -1}, {14, 39, 81, 146}, 50] (* or *) CoefficientList[Series[(14-17*x+9*x^2)/(1-x)^4,{x,0,40}],x] (* Vincenzo Librandi, Mar 05 2012 *)
Formula
Row sums from A155704: a(n) = Sum_{m=1..n} (2*m*n + m + n + 10).
From Vincenzo Librandi, Mar 05 2012: (Start)
G.f.: x*(14 - 17*x + 9*x^2)/(1-x)^4.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
Extensions
New name from Vincenzo Librandi, Mar 05 2012