cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A162296 Sum of divisors of n that have a square factor.

Original entry on oeis.org

0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 16, 0, 0, 0, 28, 0, 27, 0, 24, 0, 0, 0, 48, 25, 0, 36, 32, 0, 0, 0, 60, 0, 0, 0, 79, 0, 0, 0, 72, 0, 0, 0, 48, 54, 0, 0, 112, 49, 75, 0, 56, 0, 108, 0, 96, 0, 0, 0, 96, 0, 0, 72, 124, 0, 0, 0, 72, 0, 0, 0, 183, 0, 0, 100, 80, 0, 0, 0, 168, 117, 0, 0, 128, 0, 0
Offset: 1

Views

Author

Joerg Arndt, Jun 30 2009

Keywords

Comments

Note that 1 does not have a square factor. - Antti Karttunen, Nov 20 2017

Examples

			a(8) = 12 = 4 + 8.
		

Crossrefs

Programs

  • Mathematica
    Array[DivisorSum[#, # &, # (1 - MoebiusMu[#]^2) == # &] &, 86] (* Michael De Vlieger, Nov 20 2017 *)
    a[1]=0; a[n_] := DivisorSigma[1, n] - Times@@(1+FactorInteger[n][[;; , 1]]); Array[a,86] (* Amiram Eldar, Dec 20 2018 *)
  • PARI
    a(n)=sumdiv(n,d,d*(1-moebius(d)^2)); v=vector(300,n,a(n))
    
  • Python
    from math import prod
    from sympy import factorint
    def A162296(n):
        f = factorint(n)
        return prod((p**(e+1)-1)//(p-1) for p, e in f.items())-prod(p+1 for p in f) # Chai Wah Wu, Apr 20 2023

Formula

a(n) + A048250(n) = A000203(n). - Antti Karttunen, Nov 20 2017
From Amiram Eldar, Oct 01 2022: (Start)
a(n) = 0 iff n is squarefree (A005117).
a(n) = n iff n is a square of a prime (A001248).
Sum_{k=1..n} a(k) ~ (Pi^2/12 - 1/2) * n^2. (End)