A162296 Sum of divisors of n that have a square factor.
0, 0, 0, 4, 0, 0, 0, 12, 9, 0, 0, 16, 0, 0, 0, 28, 0, 27, 0, 24, 0, 0, 0, 48, 25, 0, 36, 32, 0, 0, 0, 60, 0, 0, 0, 79, 0, 0, 0, 72, 0, 0, 0, 48, 54, 0, 0, 112, 49, 75, 0, 56, 0, 108, 0, 96, 0, 0, 0, 96, 0, 0, 72, 124, 0, 0, 0, 72, 0, 0, 0, 183, 0, 0, 100, 80, 0, 0, 0, 168, 117, 0, 0, 128, 0, 0
Offset: 1
Examples
a(8) = 12 = 4 + 8.
Links
Programs
-
Mathematica
Array[DivisorSum[#, # &, # (1 - MoebiusMu[#]^2) == # &] &, 86] (* Michael De Vlieger, Nov 20 2017 *) a[1]=0; a[n_] := DivisorSigma[1, n] - Times@@(1+FactorInteger[n][[;; , 1]]); Array[a,86] (* Amiram Eldar, Dec 20 2018 *)
-
PARI
a(n)=sumdiv(n,d,d*(1-moebius(d)^2)); v=vector(300,n,a(n))
-
Python
from math import prod from sympy import factorint def A162296(n): f = factorint(n) return prod((p**(e+1)-1)//(p-1) for p, e in f.items())-prod(p+1 for p in f) # Chai Wah Wu, Apr 20 2023
Formula
From Amiram Eldar, Oct 01 2022: (Start)
a(n) = 0 iff n is squarefree (A005117).
a(n) = n iff n is a square of a prime (A001248).
Sum_{k=1..n} a(k) ~ (Pi^2/12 - 1/2) * n^2. (End)
Comments