cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 41 results. Next

A325314 a(n) = n - A162296(n), where A162296(n) is the sum of divisors of n that have a square factor.

Original entry on oeis.org

1, 2, 3, 0, 5, 6, 7, -4, 0, 10, 11, -4, 13, 14, 15, -12, 17, -9, 19, -4, 21, 22, 23, -24, 0, 26, -9, -4, 29, 30, 31, -28, 33, 34, 35, -43, 37, 38, 39, -32, 41, 42, 43, -4, -9, 46, 47, -64, 0, -25, 51, -4, 53, -54, 55, -40, 57, 58, 59, -36, 61, 62, -9, -60, 65, 66, 67, -4, 69, 70, 71, -111, 73, 74, -25, -4, 77, 78, 79, -88, -36, 82, 83
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n - A162296(n).
a(n) = A033879(n) + A325313(n).
a(A228058(n)) = -A325320(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - zeta(2)/2 = 0.1775329665... . - Amiram Eldar, Feb 22 2024

A325385 a(n) = gcd(n-A048250(n), n-A162296(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 5, 2, 1, 4, 1, 2, 3, 1, 1, 3, 1, 2, 1, 2, 1, 12, 19, 2, 1, 4, 1, 6, 1, 1, 3, 2, 1, 1, 1, 2, 1, 2, 1, 6, 1, 4, 3, 2, 1, 4, 41, 1, 3, 2, 1, 6, 1, 8, 1, 2, 1, 12, 1, 2, 1, 1, 1, 6, 1, 2, 3, 2, 1, 3, 1, 2, 1, 4, 1, 6, 1, 2, 1, 2, 1, 4, 1, 2, 3, 4, 1, 18, 7, 4, 1, 2, 5, 12, 1, 1, 3, 1, 1, 6, 1, 2, 3
Offset: 1

Views

Author

Antti Karttunen, Apr 24 2019

Keywords

Crossrefs

Programs

Formula

a(n) = gcd(n-A048250(n), n-A162296(n)).
a(n) = gcd(A325313(n), A325314(n)).
a(A228058(n)) = A325375(n).

A325974 Arithmetic mean of {sum of non-unitary divisors} and {sum of nonsquarefree divisors}: a(n) = (1/2)*(A048146(n) + A162296(n)).

Original entry on oeis.org

0, 0, 0, 3, 0, 0, 0, 9, 6, 0, 0, 12, 0, 0, 0, 21, 0, 18, 0, 18, 0, 0, 0, 36, 15, 0, 24, 24, 0, 0, 0, 45, 0, 0, 0, 60, 0, 0, 0, 54, 0, 0, 0, 36, 36, 0, 0, 84, 28, 45, 0, 42, 0, 72, 0, 72, 0, 0, 0, 72, 0, 0, 48, 93, 0, 0, 0, 54, 0, 0, 0, 144, 0, 0, 60, 60, 0, 0, 0, 126, 78, 0, 0, 96, 0, 0, 0, 108, 0, 108, 0, 72, 0, 0, 0, 180, 0, 84, 72
Offset: 1

Views

Author

Antti Karttunen, Jun 02 2019

Keywords

Examples

			For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, non-unitary divisors are 2, 3, 6, 12 and 18 so A048146(36) = 2+3+6+12+18 = 41, while the nonsquarefree divisors are 4, 9, 12, 18 and 36, so A162296(36) = 4+9+12+18+36 = 79, thus a(36) = (41+79)/2 = 60.
		

Crossrefs

Programs

Formula

a(n) = (1/2)*(A048146(n) + A162296(n)).
a(n) = A000203(n) - A325973(n).
a(n) = n - A325978(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = zeta(2)*(1/2 - 1/(4*zeta(3))) - 1/4 = 0.2303588390... . - Amiram Eldar, Feb 22 2024

A322609 Numbers k such that s(k) = 2*k, where s(k) is the sum of divisors of k that have a square factor (A162296).

Original entry on oeis.org

24, 54, 112, 150, 294, 726, 1014, 1734, 1984, 2166, 3174, 5046, 5766, 8214, 10086, 11094, 13254, 16854, 19900, 20886, 22326, 26934, 30246, 31974, 32512, 37446, 41334, 47526, 56454, 61206, 63654, 68694, 71286, 76614, 96774, 102966, 112614, 115926, 133206
Offset: 1

Views

Author

Amiram Eldar, Dec 20 2018

Keywords

Comments

This sequence is infinite since 6*p^2 is included for all primes p. Terms that are not of the form 6*p^2: 112, 1984, 19900, 32512, 134201344, ...
Includes 4*k if k is an even perfect number: see A000396. - Robert Israel, Jan 06 2019
From Amiram Eldar, Oct 01 2022: (Start)
24 = 6*prime(1)^2 = 4*A000396(1) is the only term that is common to the two forms that are mentioned above.
19900 is the only term below 10^11 which is not of any of these two forms. Are there any other such terms?
All the known nonunitary perfect numbers (A064591) are also of the form 4*k, where k is an even perfect number.
Equivalently, numbers k such that A325314(k) = -k. (End)

Examples

			24 is a term since A162296(24) = 48 = 2*24.
		

Crossrefs

Subsequence of A005101 and A013929.
Numbers k such that A162296(k) = m*k: A005117 (m=0), A001248 (m=1), this sequence (m=2), A357493 (m=3), A357494 (m=4).

Programs

  • Maple
    filter:= proc(n) convert(remove(numtheory:-issqrfree,numtheory:-divisors(n)),`+`)=2*n end proc:
    select(filter, [$1..200000]); # Robert Israel, Jan 06 2019
  • Mathematica
    s[1]=0; s[n_] := DivisorSigma[1,n] - Times@@(1+FactorInteger[n][[;;,1]]); Select[Range[10000], s[#] == 2# &]
  • PARI
    s(n) = sumdiv(n, d, d*(1-moebius(d)^2)); \\ A162296
    isok(n) = s(n) == 2*n; \\ Michel Marcus, Dec 20 2018
    
  • Python
    from sympy import divisors, factorint
    A322609_list = [k for k in range(1,10**3) if sum(d for d in divisors(k,generator=True) if max(factorint(d).values(),default=1) >= 2) == 2*k] # Chai Wah Wu, Sep 19 2021

A325378 a(n) = A162296(A228058(n)) - A048250(A228058(n)).

Original entry on oeis.org

30, 70, 90, 246, 150, 266, 190, 210, 678, 342, 270, 310, 654, 574, 370, 570, 450, 738, 930, 490, 510, 722, 550, 570, 798, 1582, 690, 1026, 750, 2034, 790, 1230, 1626, 1178, 870, 1526, 910, 970, 990, 2046, 1558, 1406, 1722, 1962, 1150, 1170, 1210, 4062, 1710, 1290, 3390, 1350, 1862, 1390, 1938, 1410, 2214, 1470, 3030
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Crossrefs

Programs

  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A162296(n) - A048250(n),", ")));

Formula

a(n) = A162296(A228058(n)) - A048250(A228058(n)).
a(n) = A325319(n) + A325320(n).

A357493 Numbers k such that s(k) = 3*k, where s(k) is the sum of divisors of k that have a square factor (A162296).

Original entry on oeis.org

480, 2688, 56304, 89400, 195216, 2095104, 9724032, 69441408, 1839272960, 5905219584
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to 3-perfect numbers (A005820) with nonsquarefree divisors.
Equivalently, numbers k such that A325314(k) = -2*k.
a(11) > 10^11, if it exists.
If k is one of the 6 known 3-perfect numbers, then 4*k is a term.

Examples

			480 is a term since A162296(480) = 1440 = 3*480.
		

Crossrefs

Subsequence of A013929 and A068403.
Numbers k such that A162296(k) = m*k: A005117 (m=0), A001248 (m=1), A322609 (m=2), this sequence (m=3), A357494 (m=4).
Similar sequence: A005820.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) == 3*n]; Select[Range[2, 10^7], q]

A357494 Numbers k such that s(k) = 4*k, where s(k) is the sum of divisors of k that have a square factor (A162296).

Original entry on oeis.org

902880, 1534680, 361674720, 767685600, 4530770640, 4941414720, 5405788800, 5517818880, 16993944000, 20429240832, 94820077440
Offset: 1

Views

Author

Amiram Eldar, Oct 01 2022

Keywords

Comments

Analogous to 4-perfect numbers (A027687) with nonsquarefree divisors.
Equivalently, numbers k such that A325314(k) = -3*k.
There are no numbers k below 10^11 such that A162296(k) = m*k for integers m > 4.

Examples

			902880 is a term since A162296(902880) = 3611520 = 4*902880.
		

Crossrefs

Subsequence of A013929 and A023198.
Numbers k such that A162296(k) = m*k: A005117 (m=0), A001248 (m=1), A322609 (m=2), A357493 (m=3), this sequence (m=4).
Similar sequence: A027687.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) == 4*n]; Select[Range[2, 2*10^6], q]

A357605 Numbers k such that A162296(k) > 2*k.

Original entry on oeis.org

36, 48, 72, 80, 96, 108, 120, 144, 160, 162, 168, 180, 192, 200, 216, 224, 240, 252, 264, 270, 280, 288, 300, 312, 320, 324, 336, 352, 360, 378, 384, 392, 396, 400, 408, 416, 432, 448, 450, 456, 468, 480, 486, 500, 504, 528, 540, 552, 560, 576, 588, 594, 600, 612
Offset: 1

Views

Author

Amiram Eldar, Oct 06 2022

Keywords

Comments

The least odd term is a(470) = A357607(1) = 4725.
The numbers of terms not exceeding 10^k, for k = 2, 3, ..., are 5, 92, 1011, 10160, 102125, 1022881, 10231151, 102249758, 1022781199, 10229781638, ... . Apparently, the asymptotic density of this sequence exists and equals 0.102... .
An analog of abundant numbers, in which the divisor sum is restricted to nonsquarefree divisors. - Peter Munn, Oct 26 2022

Examples

			36 is a term since A162296(36) = 79 > 2*36.
		

Crossrefs

Cf. A162296.
Subsequence of A005101 and A013929.

Programs

  • Mathematica
    q[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1) > 2*n]; Select[Range[2, 1000], q]

A362401 Numbers in the range of A162296, where A162296(n) is the sum of divisors of n that have a square factor larger than 1.

Original entry on oeis.org

0, 4, 9, 12, 16, 24, 25, 27, 28, 32, 36, 48, 49, 54, 56, 60, 72, 75, 79, 80, 96, 100, 108, 112, 117, 120, 121, 124, 126, 128, 144, 147, 150, 152, 162, 168, 169, 176, 180, 183, 192, 196, 199, 200, 216, 224, 240, 248, 252, 268, 270, 272, 288, 289, 294, 296, 300
Offset: 1

Views

Author

Amiram Eldar, Apr 18 2023

Keywords

Comments

Possible values of A162296 in increasing order.

Examples

			0 is a term since A162296(k) = 0 if k is squarefree (A005117).
		

Crossrefs

Similar sequences: A078923, A002191, A002202, A002174, A274790.

Programs

  • Mathematica
    s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; m = 300; Select[Union[Array[s, m]], # <= m &]
  • PARI
    s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) -  prod(i = 1, #f~, f[i, 1] + 1);}
    lista(kmax) = select(x -> (x < kmax), Set(vector(kmax, k, s(k))))

A325315 Bitwise-XOR of absolute values of (n - A048250(n)) and (n - A162296(n)).

Original entry on oeis.org

1, 3, 2, 1, 4, 0, 6, 1, 5, 2, 10, 4, 12, 4, 6, 1, 16, 15, 18, 6, 30, 24, 22, 20, 19, 10, 30, 0, 28, 52, 30, 1, 46, 54, 46, 51, 36, 48, 54, 54, 40, 28, 42, 12, 28, 52, 46, 100, 41, 57, 38, 14, 52, 28, 38, 8, 46, 26, 58, 40, 60, 28, 22, 1, 82, 12, 66, 10, 94, 12, 70, 83, 72, 98, 42, 20, 94, 20, 78, 102, 105, 126, 82, 32, 66, 120, 118, 12
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Cf. A000396, A003987, A028982 (positions of odd terms), A048250, A162296, A228058, A325310, A325313, A325314.

Programs

  • Mathematica
    Array[BitXor @@ Abs[#1 - Map[Total, {#3, Complement[#2, #3]}]] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 88] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    A325315(n) = bitxor(abs(A325313(n)),abs(A325314(n)));

Formula

a(n) = A003987(abs(A325313(n)), abs(A325314(n))).
Showing 1-10 of 41 results. Next