cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A325310 a(n) = A001511(A325315(n)), except when A325315(n) = 0, then a(n) = 0.

Original entry on oeis.org

1, 1, 2, 1, 3, 0, 2, 1, 1, 2, 2, 3, 3, 3, 2, 1, 5, 1, 2, 2, 2, 4, 2, 3, 1, 2, 2, 0, 3, 3, 2, 1, 2, 2, 2, 1, 3, 5, 2, 2, 4, 3, 2, 3, 3, 3, 2, 3, 1, 1, 2, 2, 3, 3, 2, 4, 2, 2, 2, 4, 3, 3, 2, 1, 2, 3, 2, 2, 2, 3, 2, 1, 4, 2, 2, 3, 2, 3, 2, 2, 1, 2, 2, 6, 2, 4, 2, 3, 4, 2, 2, 5, 2, 3, 2, 3, 6, 1, 2, 1, 3, 3, 2, 2, 2
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Cf. A000396, A001511, A028982 (gives the positions of 1's), A048250, A162296, A228058, A325313, A325314, A325315, A325378, A325379.

Programs

  • Mathematica
    Array[If[# == 0, 0, IntegerExponent[2 #, 2]] &[BitXor @@ Abs[#1 - Map[Total, {#3, Complement[#2, #3]}]]] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 105] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A001511ext(n) = if(!n,n,sign(n)*(1+valuation(n,2))); \\ Like A001511 but gives 0 for 0 and -A001511(-n) for negative numbers.
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    A325315(n) = bitxor(abs(A325313(n)),abs(A325314(n)));
    A325310(n) = A001511ext(A325315(n));

Formula

If A325315(n) = 0, then a(n) = 0, otherwise a(n) = A001511(A325315(n)).
a(A228058(n)) = A001511(abs(A325379(n))), assuming there are no odd perfect numbers, in which case a(A228058(n)) >= 3 for all n.

A325314 a(n) = n - A162296(n), where A162296(n) is the sum of divisors of n that have a square factor.

Original entry on oeis.org

1, 2, 3, 0, 5, 6, 7, -4, 0, 10, 11, -4, 13, 14, 15, -12, 17, -9, 19, -4, 21, 22, 23, -24, 0, 26, -9, -4, 29, 30, 31, -28, 33, 34, 35, -43, 37, 38, 39, -32, 41, 42, 43, -4, -9, 46, 47, -64, 0, -25, 51, -4, 53, -54, 55, -40, 57, 58, 59, -36, 61, 62, -9, -60, 65, 66, 67, -4, 69, 70, 71, -111, 73, 74, -25, -4, 77, 78, 79, -88, -36, 82, 83
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

Formula

a(n) = n - A162296(n).
a(n) = A033879(n) + A325313(n).
a(A228058(n)) = -A325320(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = 1 - zeta(2)/2 = 0.1775329665... . - Amiram Eldar, Feb 22 2024

A325313 a(n) = A048250(n) - n, where A048250(n) is the sum of squarefree divisors of n.

Original entry on oeis.org

0, 1, 1, -1, 1, 6, 1, -5, -5, 8, 1, 0, 1, 10, 9, -13, 1, -6, 1, -2, 11, 14, 1, -12, -19, 16, -23, -4, 1, 42, 1, -29, 15, 20, 13, -24, 1, 22, 17, -22, 1, 54, 1, -8, -21, 26, 1, -36, -41, -32, 21, -10, 1, -42, 17, -32, 23, 32, 1, 12, 1, 34, -31, -61, 19, 78, 1, -14, 27, 74, 1, -60, 1, 40, -51, -16, 19, 90, 1, -62, -77, 44, 1, 12, 23, 46
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Programs

Formula

a(n) = A048250(n) - n.
a(n) = A325314(n) - A033879(n).
a(A228058(n)) = -A325319(n).
Showing 1-3 of 3 results.