cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A325379 a(n) = A033879(A228058(n)).

Original entry on oeis.org

12, 52, 72, 148, 132, 216, 172, 192, 84, 292, 252, 292, 412, 476, 352, 520, 432, 640, 592, 472, 492, 672, 532, 552, 748, 412, 672, 976, 732, 576, 772, 1132, 1048, 1128, 852, 1284, 892, 952, 972, 1324, 1460, 1356, 1624, 1720, 1132, 1152, 1192, -36, 1660, 1272, 1068, 1332, 1812, 1372, 1888, 1392, 2116, 1452, 1972, 2040, 1552, 2116
Offset: 1

Views

Author

Antti Karttunen, Apr 22 2019

Keywords

Comments

The negative terms -36, -1692, -2388, -34944, -16596, -38628, -512, ..., occur at n = 48, 378, 1744, 2255, 2745, 2870, 3555, ..., where A228058(n) is 2205, 19845, 108045, 143325, 178605, 187425, 236925, ..., one of the odd abundant numbers, A005231.

Crossrefs

Programs

  • PARI
    A033879(n) = (n+n-sigma(n));
    isA228058(n) = if(!(n%2)||(omega(n)<2),0,my(f=factor(n),y=0); for(i=1,#f~,if(1==(f[i,2]%4), if((1==y)||(1!=(f[i,1]%4)),return(0),y=1), if(f[i,2]%2, return(0)))); (y));
    k=0; n=0; while(k<100,n++; if(isA228058(n), k++; print1(A033879(n), ", ")));

Formula

a(n) = A033879(A228058(n)).
a(n) = A325319(n) - A325320(n).
A001511(abs(a(n))) = A325310(A228058(n)), assuming there are no odd perfect numbers, in which case A001511(abs(a(n))) >= 3 for all n. That is, all terms are multiples of 4.

A325315 Bitwise-XOR of absolute values of (n - A048250(n)) and (n - A162296(n)).

Original entry on oeis.org

1, 3, 2, 1, 4, 0, 6, 1, 5, 2, 10, 4, 12, 4, 6, 1, 16, 15, 18, 6, 30, 24, 22, 20, 19, 10, 30, 0, 28, 52, 30, 1, 46, 54, 46, 51, 36, 48, 54, 54, 40, 28, 42, 12, 28, 52, 46, 100, 41, 57, 38, 14, 52, 28, 38, 8, 46, 26, 58, 40, 60, 28, 22, 1, 82, 12, 66, 10, 94, 12, 70, 83, 72, 98, 42, 20, 94, 20, 78, 102, 105, 126, 82, 32, 66, 120, 118, 12
Offset: 1

Views

Author

Antti Karttunen, Apr 21 2019

Keywords

Crossrefs

Cf. A000396, A003987, A028982 (positions of odd terms), A048250, A162296, A228058, A325310, A325313, A325314.

Programs

  • Mathematica
    Array[BitXor @@ Abs[#1 - Map[Total, {#3, Complement[#2, #3]}]] & @@ {#1, #2, Select[#2, SquareFreeQ]} & @@ {#, Divisors[#]} &, 88] (* Michael De Vlieger, Apr 21 2019 *)
  • PARI
    A048250(n) = factorback(apply(p -> p+1,factor(n)[,1]));
    A325313(n) = (A048250(n) - n);
    A162296(n) = sumdiv(n, d, d*(1-issquarefree(d)));
    A325314(n) = (n - A162296(n));
    A325315(n) = bitxor(abs(A325313(n)),abs(A325314(n)));

Formula

a(n) = A003987(abs(A325313(n)), abs(A325314(n))).
Showing 1-2 of 2 results.