A362404 Numbers k such that k and k+1 are both in A362401.
24, 27, 48, 79, 120, 168, 199, 288, 350, 360, 378, 391, 447, 507, 528, 775, 840, 895, 960, 1088, 1136, 1368, 1638, 1639, 1680, 1848, 1849, 2095, 2127, 2208, 2322, 2749, 2808, 3720, 3726, 3798, 3799, 3919, 4050, 4087, 4488, 4550, 4872, 5040, 5328, 5448, 5631, 6240
Offset: 1
Keywords
Examples
24 is a term since 24 and 25 are both in the range of A162296: A162296(20) = 24 and A162296(25) = 25.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..3557 (terms below 10^8)
Programs
-
Mathematica
s[n_] := Module[{f = FactorInteger[n], p, e}, p = f[[;; , 1]]; e = f[[;; , 2]]; Times @@ ((p^(e + 1) - 1)/(p - 1)) - Times @@ (p + 1)]; s[1] = 0; seq[max_] := Module[{v = Select[Union[Array[s, max]], 0 < # <= max &], i}, i = Position[Differences[v], 1] // Flatten; v[[i]]]; seq[10^4]
-
PARI
s(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i, 1]; e = f[i, 2]; ((p^(e + 1) - 1)/(p - 1))) - prod(i = 1, #f~, f[i, 1] + 1);} lista(kmax) = {my(v = select(x -> (x < kmax), Set(vector(kmax, k, s(k))))); for(k=1, #v-1, if(v[k+1] - v[k] == 1, print1(v[k], ", ")));}
Comments