A162306 Irregular triangle in which row n contains the numbers <= n whose prime factors are a subset of prime factors of n.
1, 1, 2, 1, 3, 1, 2, 4, 1, 5, 1, 2, 3, 4, 6, 1, 7, 1, 2, 4, 8, 1, 3, 9, 1, 2, 4, 5, 8, 10, 1, 11, 1, 2, 3, 4, 6, 8, 9, 12, 1, 13, 1, 2, 4, 7, 8, 14, 1, 3, 5, 9, 15, 1, 2, 4, 8, 16, 1, 17, 1, 2, 3, 4, 6, 8, 9, 12, 16, 18, 1, 19, 1, 2, 4, 5, 8, 10, 16, 20, 1, 3, 7, 9, 21, 1, 2, 4, 8, 11, 16, 22, 1, 23
Offset: 1
Examples
n = 6: {1, 2, 3, 4, 6}. n = 7: {1, 7}. n = 8: {1, 2, 4, 8}. n = 9: {1, 3, 9}. n = 10: {1, 2, 4, 5, 8, 10}. n = 11: {1, 11}. n = 12: {1, 2, 3, 4, 6, 8, 9, 12}.
Links
- T. D. Noe and Michael De Vlieger, Rows n = 1..1000 of triangle, flattened (first rows n=1..200 from T. D. Noe)
- Michael De Vlieger, Plot k in row n at (x,y) = (k,-n) for n = 1..2^10.
Crossrefs
Programs
-
Maple
A:= proc(n) local F, S, s, j, p; F:= numtheory:-factorset(n); S:= {1}; for p in F do S:= {seq(seq(s*p^j, j=0..floor(log[p](n/s))), s=S)} od; S end proc; map(op,[seq(A(n), n=1..100)]); # Robert Israel, Jul 15 2014
-
Mathematica
pf[n_] := If[n==1, {}, Transpose[FactorInteger[n]][[1]]]; SubsetQ[lst1_, lst2_] := Intersection[lst1,lst2]==lst1; Flatten[Table[pfn=pf[n]; Select[Range[n], SubsetQ[pf[ # ],pfn] &], {n,27}]] (* Second program: *) f[x_, y_ : 0] := Block[{m, n, nn, j, k, p, t, v, z}, n = Abs[x]; nn = If[y == 0, n, y]; If[n == 1, {1}, z = Length@ MapIndexed[Set[{p[#2], m[#2]}, {#1, 0}] & @@ {#1, First[#2]} &, FactorInteger[n][[All, 1]] ]; k = Times @@ Array[p[#]^m[#] &, z]; Set[{v, t}, {1, False}]; Union@ Reap[Do[Set[t, k > nn]; If[t, k /= p[v]^m[v]; m[v] = 0; v++; If[v > z, Break[]], v = 1; Sow[k] ]; m[v]++; k *= p[v], {i, Infinity}] ][[-1, 1]] ] ]; Array[f, 120] (* Michael De Vlieger, Jun 18 2024 *)
Formula
Row n of this sequence is {k <= n : rad(k) | n }, where rad = A007947. - Michael De Vlieger, Jun 18 2024
Comments