A162312 Triangular array, inverse of 2*P - I, where P is Pascal's triangle and I is the identity matrix.
1, -2, 1, 6, -4, 1, -26, 18, -6, 1, 150, -104, 36, -8, 1, -1082, 750, -260, 60, -10, 1, 9366, -6492, 2250, -520, 90, -12, 1, -94586, 65562, -22722, 5250, -910, 126, -14, 1, 1091670, -756688, 262248, -60592, 10500, -1456, 168, -16, 1, -14174522, 9825030
Offset: 0
Examples
Triangle begins ==================================================== n\k|.....0......1......2......3......4......5......6 ==================================================== 0..|.....1 1..|....-2......1 2..|.....6.....-4......1 3..|...-26.....18.....-6......1 4..|...150...-104.....36.....-8......1 5..|.-1082....750...-260.....60....-10......1 6..|..9366..-6492...2250...-520.....90....-12......1 ...
References
- S. Roman, The Umbral Calculus, Dover Publications.
Links
- G. F. C. De Bruyn, Formulas for a + a^2*2^p + a^3*3^p + ... + a^n*n^p, Fibonacci Quart. 33 (1995), no. 2, 98-103.
- R. B. Nelsen, Problem E3062, Amer. Math. Monthly, Vol. 94, No. 4 (Apr., 1987), 376-377.
Programs
-
Maple
#A162312 with(combinat): T := (n,k) -> (-1)^(n+k)*binomial(n,k) *add( j!*stirling2(n-k+1,j+1),j = 0..n): for n from 0 to 9 do seq(T(n,k), k = 0..n); end do;
-
Mathematica
Table[(-1)^(n+k) Binomial[n, k] PolyLog[k-n, 1/2], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 14 2019 *)
-
PARI
matrix(10, 10, n, k, 2*binomial(n-1,k-1) - (n==k))^(-1) \\ Michel Marcus, Jul 12 2018
Formula
TABLE ENTRIES
(1)... T(n,k) = (-1)^(n+k) * binomial(n,k) * A000629(n-k).
(2)... T(n,k) = (-1)^(n+k) * binomial(n,k) * sum {j = 0..n} j! * Stirling2(n-k+1,j+1).
GENERATING FUNCTION
(3)... exp(x*t)/(2*exp(t)-1) = 1 + (-2+x)*t + (6-4*x+x^2)*t^2/2!
+ ....
PROPERTIES OF ROW POLYNOMIALS
The row generating polynomials R_n(x) form an Appell sequence. The first few values are R_0(x) = 1, R_1(x) = x-2, R_2(x) = x^2-4*x+6 and R_3(x) = x^3-6*x^2+18*x-26.
They may be recursively computed by means of
(4)... R_n(x) = x^n - 2*sum {k = 0..n-1} binomial(n,k) * R_k(x).
Explicit formulas are
(5)... R_n(x) = sum {j = 0..n} sum {k = j..n} (-2)^j * k! * Stirling2(n,k) * binomial(x,k-j),
(6)... R_n(x) = (-1)^n * sum {j = 0..n} sum {k = j..n} k! * Stirling2(n,k) * binomial(-x+1,k-j),
and
(7)... R_n(x) = sum {j = 0..n} sum {k = 0..j} 2^j * (-1)^k * comb(j,k) * (x + k)^n.
Other expansions include
(8)... R_n(x) = sum {k = 0..n} binomial(n,k) * (-1)^k * A000670(k) * (x-1)^(n-k),
(9)... R_n(x) = sum {k = 0..n} binomial(n,k) * (-1/2)^k * A080253(k) * (x-1/2)^(n-k)
and
(10)... R_n(x) = sum {k = 0..n} binomial(n,k) * (-1)^k * A007047(k) * (x+1)^(n-k).
SUMS OF POWERS OF INTEGERS
The row polynomials satisfy the difference equation
(11)... 2*R_n(x+1) - R_n(x) = x^n,
and so may be used to evaluate the weighted sum of powers of integers
(12)... sum {k = 0..n-1} 2^k * k^m = 2^n*R_m(n) - R_m(0).
For example, m = 3 gives
(13)... sum {k = 0..n-1} 2^k * k^3 = 2^n*(n^3-6*n^2+18*n-26) + 26.
More generally we have
(14)... sum {k = 0..n-1} 2^k * (x + k)^m = 2^n * R_m(x + n) - R_m(x).
RELATIONS WITH OTHER SEQUENCES
(15)... Row sums [1,-1,3,-13,75,...] = (-1)^n*A000670(n).
(16)... Alt. row sums [1,-3,11,-51,299,...] = (-1)^n * A007047(n).
(17)... Column 0: (-1)^n * A000629(n).
(18)... (-2)^n * R_n(1/2) = A080253(n).
(19)... R_n(1-x) = (-1)^n * P_n(x),
where P_n(x) are the row generating polynomials of A154921.
This provides the connection between (12) and the result
(20)... sum {k = 0..n-1} (1/2)^k * k^m = 2*P_m(0) - (1/2)^(n-1) * P_m(n).
Extensions
Typo corrected by Peter Bala, Nov 05 2010
Comments