A162318 A positive integer n is included if |d(n+1)-d(n)| = 2, where d(n) is the number of divisors of n.
5, 6, 7, 10, 13, 20, 22, 27, 32, 37, 45, 46, 50, 51, 58, 61, 62, 68, 73, 74, 76, 82, 91, 92, 106, 115, 117, 123, 124, 146, 152, 153, 157, 164, 166, 170, 174, 178, 187, 188, 193, 206, 212, 226, 235, 236, 245, 261, 262, 267, 272, 274, 277, 278, 284, 291, 313, 325
Offset: 1
Keywords
Examples
68 is included because |d(69)-d(68)| = |4 - 6| = 2. [_Emeric Deutsch_, Jul 12 2009]
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
with(numtheory): a := proc (n) if abs(tau(n+1)-tau(n)) = 2 then n else end if end proc; seq(a(n), n = 1 .. 350); # Emeric Deutsch, Jul 12 2009
-
Mathematica
Select[Range[500], Abs[DivisorSigma[0, # + 1] - DivisorSigma[0, #]] == 2 &] (* Indranil Ghosh, Mar 26 2017 *) Position[Abs[Differences[DivisorSigma[0,Range[350]]]],2]//Flatten (* Harvey P. Dale, Aug 14 2017 *)
-
PARI
isok(n) = abs(numdiv(n+1) - numdiv(n)) == 2; \\ Michel Marcus, Mar 26 2017
-
Python
from sympy import divisor_count print([n for n in range(500) if abs(divisor_count(n + 1) - divisor_count(n)) == 2]) # Indranil Ghosh, Mar 26 2017
Extensions
Extended by Emeric Deutsch, Jul 12 2009